Cirripedia (Crustacea) from the "Campagne Biaçores" in the Azores region, including a generic revision of Verrucidae

Paulo S. YOUNG

Museu Nacional, UFRJ
Quinta da Boa Vista, 20940-040, Rio de Janeiro, RJ (Brazil)

KEY WORDS
Cirripedia,
Verrucidae, new genus and species, Azores region.

MOTS CLÉS
Cirripedia,
Verrucidae, nouveaux genres et especces, région des Açores.

Young P. S. 1998. - Cirripedia (Crustacea) from the "Campagne Biaçores" in the Azores region, including a generic revision of Verrucidae. Zoosystema 20 (1) :31-92.

Abstract

The cirripeds sampled by the N. O. Jean Charcot from the Azores tegion include thirry-four species: twenty lepadomorphs, eight verrucomorphs and six balanomorphs. Among these are two new species: Arcoscalpellum epankos n.sp. and Tesseropora amoldi n.sp. and several little known species. "The family Verrucidae is revised, and a key to the genera is included. Verruca and Metaverruca are rediagnosed, two new genera are proposed: Newmaniverruca n.g. and Costatoverruca n.g. A list of recent species of Verrucidae is provided, reported with keys to all of the species. Forty-five species of cirripeds are reported from the Azores region, of which one third are endemic.

Abstract

RÉSUME Cirripèdes (Crustacea) de la "Campagne Biacores » dans la région des Açores, avec une révision des genres de Verrucidae. Les cirripèdes recueillis par le N. O. Jean Charcot dans la région des Açores comprennent trente-quatre espèces: vingt Lépadomorphes, huir Verrucomorphes et six Balanomorphes. Parmi eux, deux espèces sont nouvelles: Arcascalpellum eponkos n.sp. et Tesseropora arnoldi n.sp., et plusieurs peu connues.. Les Verrucidae sont révisés et une clé des genres est itrcluse. Verruca er Metaverrucat font l'objet d'une diagnose émendée er deux nouveaux genres sont proposés: Newmaniverruca n.g. et Costatoverruca n.g. Une liste des aspèces actuelles de Verrucidae est fournie, ainsi que des clés pour toutes les espèces. Quarante-cinq espèces de cirripèdes sont signalées de la région des Açores, dont le tiers est endémique.

INTRODUCTION

The "Campagne Biaçores" undertaken by the N. O. Jean Charcot and directed by Dr Jacques Forest, sampled the Azores Region from the intertidal to the abyssal zone (4700 m), especially along the Mid-Atlantic Ridge. During the cruisc at the West European Basin deep-sea samples were collected.
The decp water fauna of the Azores region is better known than that of shallow waters. This is the result of dredging by the Challenger, Hirondelle, Princesse Alice, Trovailleur. Talisman, and more recently by the Meteor (Hoek 1883; Aurivillus 1898; Gruvel 1900a, b, 1902a, 1920;, Young in press). The species found in shallow waters were described by Pilsbry (1916), Newman \& Ross (1977) and Baker (1967). The latter paper by Baker is based on collections from the Chelsea Expedition ar Sao Jorge Island.
The present study describes the cirriped species collected during the "Campagne Biaçorcs" from intertidal to abyssal depths. The verrucids collected during this cruise form the basis for a review and revision of the Verrucidae.
All the specimens are deposited in the Muséurn national d'Histoire naturelle, Paris (MNHN), the Museu Nacional do Rio de Janeiro (MNRJ) and the United States National Museum (USNM).

Abbreviations used are as follows:
tl total length;
rc rostro-carinal diameter.

EARLY STUDIES ON THE BARNACLES OF THE AZORES

The barnacles from the Azores region were collected first by H. M. S. Challenger, which dredged around the archipclago. Hock (1883) described two new specics. Scalpellum acurum and Dichelaspis sessilis. Aurivillius (1898) described nineteen species from this region based on collections from the campagnes of Hirondelle and

Princesse Alice: Scalpellum debile, S. rigidum, S. mamillatum, S, anceps, S. molle, S. erectum, S. grimaldii, S. calyculus, S. falcatum, S. incisum, S. pusilum, Poecilasma unguiculus, Verruca recta, V. costata, V. aegualis, V. inermis, V. crenata, V. comuta and V, sculpta.

Gruvel (1900a, b) described the species collected by the Travailleur and Talisman later described in detail (Gouvd 1902a), In the present study eight species now to the Azores are redescribed: S phuardsii, S. recurvitergum, S. atlanticum, S. striatum, S. Lutcum, V. erecta, V. trisulcata and V. linearis. In addition S. regium thomson, 1873, and V. strömia (Müller, 1776) were reported from this region. Gruvel also reporred S. gigas Hoek from the Azores region, but the coordinates presented appear to represent specimens collected off the coast of France.
Pilsbry (1916) describad Mcgabalanus tintinnabuhtm azoricus and recorded Balanus trigonus Darwin, 1854, and Chthamalus stellatus stellatus (Poli, 1791), all of which are shallow water species.
Gruvel (1920) provided the most completc study of the barnacles from the Azores, bascd on a series of collcctions made by the yachts of S. A. S. le Prince de Monaco. He reported thirry-seven shallow and deep water species, and added new information regarding the following species: S. vulgare Leach, 1824, S. velutinum Hoek, 1883, S. alborantense Gruvel, 1920; S. gracile Hock, 1907a, S. pilshryi Gruvel, 1911, V. spengleri Darwin, 1854, B. amphitrite Darwin, 1854, and B. spongicola Brown, 1844.
A collection made in the shallow waters of São Jorge Island (Bakes 1967) confirmed the occurrence of C. stellatus, B. trigonus, B. tintinnabulum azoricus, and V. spengleri. Baker (1967) reported the presence of Tetractita squamosa elegans Darwin, 1854. Howcver, Newman \& Ross (1977) indicated that T. squamosat elegratis likely represents a new species, Tesserpona atlamiat.
Zevina (1976) secorded S. witreum Hock, 1883, and S. michelonianum Seguenza, 1876, from the Azores and described S. limpidus from off northeast of this archipelago.
Young (in press) studied the fauna of the Great Meteor Bank and recorded Heteralepas microsto$m a$ (Gruvel, 1901) from this region.

THE SPECIES FROM THE "CAMPAGNES BIAÇORES"

Order PEDUNCULATA Lamarck, 1818 Suborder HETERALEPADOMORPHA

Newman, 1987.
Family Hetfraleradibae Nilsson-Cantell, 1921
Genus Heteralepas Pilsbry, 1907a
Heteralepas microstoma (Gruvel, 1901)
Alepas microstoma Gruvel, 1901: 259; 1902b: 282, pl. 24, figs 1B, B', 7, 8; 1905: 162, fig. 180.

Material. examinfd. - Stn 73. 1 specimen, tl: 2.4 cm , on a gorgonian, MNHN Ci 2562.

Remarks

Heteralepas microstoma is a common species from the Azores and Madeira Archipelagos, and the Great Meteor Seamounts (Young in press). It ranges from depths of 269 to 623 m , but more commonly around 300 m , forming large aggregations usually fixed on the stem of octocorals.

Suborder LEPADOMORPHA Pilsbry, 1916
Family Oxynaspididae Gruvel, 1905
Genus Oxynaspis Darwin, 1852
Oxynaspis patens Aurivilius, 1894
Oxynaspis patens Aurivillius, 1894: 38, pl. 3, figs 1-2, pl. 6, figs 13-15; pl. 8, fig. 9. - Totton 1940; 476, fig. 16. - Pilsbry 1907a: 79. - Weisbord 1979: 39, pl. 3, fig. 6-9. - Zcrina 1982: 36, fig. 26.

Material examined. $-\operatorname{Stn} 89,2$ specimens, dt: $0.9-1.0 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2563$.

Remarks

Oxynaspis patens was described by Aurivillius (1894) based on specimens from Anguilla Island, Ancilles, berween depths of $125-355 \mathrm{~m}$, and later recorded from the Bahamas (Pilsbry 1916), and Josephine and Great Meteor Seamounts, between $170-300 \mathrm{~m}$ (Young in press). The record of this species from the Azores confirms its occurrence in the Eastern Atlantic (Fig. 1).

Oxynaspis celata Darwin, 1852
Oxynaspis celata Darwin, 1852: 134, pl. 3, fig. 1. - Gruvel 1905: 103, fig. 114. - Nilsson-Cantell 1921: 226, fig. 37.

Material examined. - Stn P44, 1 specimen withous carina, MNHN Ci 2536.

Remarks

This specimen may be identified with certainty as O. celata, but lacking in the carina, the subspecies cannot be identified. Based on the geographical distribution (Fig. 2), it is probably O. celata s.str.

Bacon (1976) and Leta \& Young (1996) accorded species status for O. celata hirtae Totton, including all of the teferences to O. celata from the Western Atlantic. Figure 2 presents the general distribution of the O. celata group, including the distribution of O. hirtae.

Family Poecilasmatidae Annandale, 1909 Genus Poecilasma Darwin, 1852

Poecilasma aurantia Darwin, 1852
Poccilusma aturantia Darwin, 1852: 105, pl. 2, fig. 2.
Poecilasma Kempfferi var. aurantium - Gruvel 1902a: 31, pl. 4, figs 1-2; 1905: 115, fig. 129. - Welner 1922: 79.
Poecilasmut kaempferi aurantia - Zevina 1982: 98, fig. 86 m .

Majerial examined. - Stn 62,9 specimens, tI: $0.5-1.8 \mathrm{~cm}$, MNHN Ci 2559, MNRJ 8869. Stn 148, 14 specimens, d! $0.5-1.2 \mathrm{~cm}$, MNHN Ci 2575 , MNRJ 8870. - $\operatorname{Sin} 157.10$ specimens, t : $0.4-1.2 \mathrm{~cm}$. MNHN Ci 2581, MNRJ 8871. Stn 159, 1 specimen, tl: 1.5 cm, MNHN Cj 2583. Stn 180, 2 specimens, $1: 1.1-1.3 \mathrm{~cm}$, MNHN Ci 2665. - Str 199. 2 specimens, tl: 0.8-1.1 cm, MNHN Ci 2609. - $5 \mathrm{~m} 237,8$ specimens, ti: 0.4-1.0 cm, MNHN Ci 2628.

Remarks

Some of the species assigned to Poecilasma kacmpferi group are questionable, because most of them do not have readily diagnostic characters (Young in press). The specimens herein studied are assigned to P aurantia. All of the specimens
examined agree to Darwin's (1852) description of P a aurantia, and the type locality of this species is the Madeira Archipelago. A revision of this group is needed.

Genus Glyptelasma Pilsbry, 1907a

Glyptelasma hamatum (Calman, 1919)

Megalasma (Glyptelasma) hamatum Calman, 1919: 370, figs 5-7. - Nilsson-Cantell 1927: 770, fig. 12; 1928: 23, fig. 11; 1931: 10; 1934: 49; 1955: 219. - Weisbord 1979: 48, pl.5, figs 1-2, pl. 14. fig. 3. - Kevina 1982: 93, fig. 83.
Megalasma hamatum-Zevina 1969: 67; 1976: 1155.
Material examined. - Stn 180, 1 specimen,
d: $0.8 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2666$. - Stn 202, 16 specimens, tl: 0.9-2.5 cm, MNHN Ci 2613, MNRJ 8872. - Stn 227, 1 specimen, tl: 1.8 cm, MNHN Ci 2624.

Remarks

Glyptelasma hamatum is defined by the pair of short, hook-like processes on the prosoma and by the filamentary appendage at the base of cirrus I.
This species has a circumeropical distribution, occurring between depths of 457 and 3778 m (Weisbord 1979) and was recorded previously in the Eastern Adlantic from the Cape Verde Islands (Calman 1919) and off Sierra Leone (Nilsson-Cantell 1927; Fig. 1).

FIG. 1. - Geographic distribution of Oxynaspis patens Aurivillius ($\boxed{(}$), Glyptelasma hamatum Calman (\star), Arcoscalpellum tritonis (Hoek) ($\mathbf{\wedge}$) and Hexelasma americanum (Pilsbry) (\bullet).

Family Lepadidae Darwin, 1852
Genus Lepas Linnaeus, 1758
Lepas anatifera Linnaeus, 1758
Lepas anatifera Linnaeus, 1758: 668. - Darwin 1852: 73, pl. I, fig. 1, 1a-c. - Pilsbry 1907a: 79, pl. 9, figs 3-5.
Lepas (Anatifa) anatifera-Zevina 1981: 17, fig. 8.
Material examined. - Stn L.7, 10 specimens, ti: $0.9-2.5 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2539$.

Rematrks

Lepas anatifera is a species commonly found attached to floating objects (Pilsbry 1907a; Weisbord 1979).

Lepas pectinata Spengler, 1792
Lepas pectinatic Spengler, 1792: 106, pl. 10, fig. B, 2a-c. - Darwin 1852: 85, pl. 1, figs 3. 3a. - Pilsbry 1907a: 81, pl. 8, figs 4-6, 8.
Lepas (Anatifia) pectinata - Zevina 1981: 15, fig. 6.
Material examinet, - Stn L7. 7 specimens, ti: up to 1.0 cm , MNHN Ci 2540. - Stn 120, 16 specimens, ti: up to 0.6 cm . MNHN Ci 2565. - Stn 131, more than 100 specimens, up to 0.7 cm, MNHN Ci 2569. MNRJ 8873.

Remarks

Lepas pectinata is a species commonly found attached to floating objects, including floating detached algae (Pilsbry 1907a; Weisbord 1979). The specimens, from depths of 2100 and 2120 m , clearly represent situations where derached algae (Sargassum) sank to this depth or were erroneously picked up during dredging work, since L. pectinata and Sargassum do not live at these depths.

Genus Conchoderma Olfers, 1814
Conchoderma auritum (Linnaeus, 1767)
Lepas aurita Linnacus, 1767: 1110.
Conchoderma auritum - Darwin 1852: 141, pl. 3, figs 4, 4a-c. - Pilsbry 1907a: 99, pl. 9, fig. 2. - Zevina 1981: 26, fig. 15.

Materlal examined. - Ponta Delgada, 3 specimens, t : $1.3-2.0 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2656$.

Remarks

Conchoderma auritum is commonly found on whales and ships, and also on turtles (Pilsbry 1907a; Weisbord 1979). The specimens from "Ponta Delgada" were collected attached to the hull of N. O. Jean Chareot.

Suborder SCALPELLOMORPHA
Newman, 1987
Family Calanticidae Zevina, 1978
Genus Smilium Gray, 1825

Smilium acutum (Hoek, 1883)
Scalpellum acutum Hock, 1883: 80, pl. 3, fig. 19; pl. 8, fig. 12; 1907a: 64, pl. 7, fig. 1. - Gruvel 1920: 12, pl. 2, fig. 7.
Smilium actuthm - Newman \& Ross 1971: 38, textlig. 12, pl. 5F (synonymy). - Foster \& Buckeridge 1995a: 166, fig. 1c.

Mathrial examined. - Stn 179, 4 specimens, ht: $0.4-1.3 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2593$, MNRJ 8874.

Remarks

Smilium acutum is a world-wide species (Newman \& Ross 1971). In the Eastern Atlanric it has been recorded from the West European Basin, off Morocco, Cape Verde, Madeira, and also the Azores (Hoek 1883; Calman 1918; Gruvel 1920; Foster \& Buckeridge 1995a; Fig. 2).

Family Scal pellidae Pilsbry, 1907a
Subfamily Scalpellinae Pilsbry, 1907a
Genus Scalpellum Leach, 1817
Scalpellum scalpellum Linnaeus, 1767
Lepats scalpellum Linnaeus, 1767: 110 .
Scalpellum scalpellum - Darwin 1852: 222, pl. 5, fig. 15. - Pilsbry 1907a: 16. - Nilsson-Cantell 1978: 16, figs 6-7. - Zevima 1981: 94, fig. 65.

Material examined. - Stn 260, 27 specimens, tl: up to 1.7 cm , MNHN Ci 2654, MNRJ 8875.

Remarks

Scalpellum scalpellum is a common species along the European and North African coasts. It ranges from depths of 10 to 540 m , but occurs more commonly between 30 and 200 m (Nilsson-Cantell 1978).

Subfamily Meroscalpellinae Zevina, 1978
Genus Neoscalpellum Newman et Ross, 1971
Neascalpellum debile (Aurivillius, 1898)
Scalpellum debile Aurivillius, 1898: 189. - Gruvel 1905: 27; 1920: 31, pl. 5, figs 13-15, pl. 7, fig. 1.
Scalpellum edivardsii Gruvel, 1900a: 189; 1902a: 63, pl. 2, figs 3B, 16; 1905: 28, fig. 27.
Scalpellum dicheloplax Pilsbry, 1907a: 70, fig. 28a-c. - Hoek 1914: 4.
Scalpellum dichelophax benthophila Pilsbry, 1907a: 73, fig. 28 d .
Scalpellum alboranense Gruvel, 1920: 33, pl. 5, figs 4-6.
Neoscalpellum debile - Newman \& Ross 1971: 96, figs 49-50.

Material eximined. - 5 m 131, 3 specimens, tit: 1.0-1.1 cm, MNHN Ci 2568. - Stu 202, 1 specimen, $\mathrm{t}: 0.8 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2614 .-\operatorname{Sm} 245,2 \mathrm{spc}$ cimens, tl: 0.6-1.2 cm. MNHN Ci 2708. - Sto 249. 2 specimens, tl: 0.8-2.3 cm, MNHN Ci 2642. Stn 250, 1 specimen, tl: 3.3 cm . MNHN Ci 2646.

Remarks

Neoscalpellum debile was discussed by Newman \& Ross (1971: 96) and Young (in press). It has a North Atlantic distribution, with several records from the Azores Region (disrribution map in Young, in press).

Subfamily Arcoscalpellinae Zevina, 1978
Genus Arcoscalpellum Hoek, 1907a

Arcoscalpellum michelottianum

(Seguenza, 1876)
Scalpellum michelattiunum Seguenza, 1876: 381, pl. 6, figs 15-25, pl. 10, fig. 26.
Scalpellum velutinum Hoek, 1883: 96, pl. 4, figs 10-11, pl. 9, figs 7-9.

Arcoscalpellum michelottianum - Newman \& Ross 1971:71, textfig. 34, pl. 9b (synonymy).

Material examined. - $\operatorname{Sm} 105,1550 \mathrm{~m}, 1$ specimen, $\mathrm{tl}: 1.3 \mathrm{~cm}$, MNIIN Ci 2564. - Stn 180, 10 specimens, tl: 1.2-4.0 cm, MNHN Ci 2594, MNR] 8876. - Stn 196, 6 specimens, ti: $1.9-3.1 \mathrm{~cm}$, MNHN Ci 2606. MNRJ 8877.

Remarks

This is one of the most common deep sea species. It occurs world-wide, and there are several records from the Eastern Atlantic (distribution map in Young, in press) (Hock 1883; Gruvel 1902a, 1905. 1920; Nilsson-Cantell 1928).

Arcoscalpellum tritonis (Hoek, 1883)

(Fig. 1)
Scalpellunz tritonis Hoek, 1883: 122, pl. 5, figs 9-10, pl. 10, fig. 10; 1884: 4. - Pilsbry 1907a: 34. - Broch 1953: 4.
Arcoscalpellum tritonis - Newman \& Ross 1971: 60. - Zevina 1978: 1350; 1981:342, fig. 342.

Material examined. - Sm 66, 2 specimens, tl: $1.6-1.7 \mathrm{~cm}, \mathrm{MNHN}$ Ci 2663 . - Sm 251, I specimen, tl: $1.4 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2649$.

Remarks

The are no noteworthy differences between these specimens and those from Siboga and from Meteor (Hoek 1883; Young in press), except the relative length and development of the inframedian latus, which is more variable. The specimens from the Mereor have the inframedian latus a little higher than wide with the height almost twice width in some specimens.

Arcoscalpellum eponkos n.sp.

(Figs 3-4)
Material examined. - Holotype: stn 249, tl: $0.9 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2643$. Paratypes: 2 specimens from the same locality, tl: 0.4 and 0.6 cm , MNHN Ci 2669.

Etymology. - From the Greek, eponkos (pregnant) in reference to the inflated scurum.

Diagnosis
Plates of capitulum approximate, thin, smooth,

Fig. 2. - Geographic distribution of Oxynaspis celata group ($■$) (in the Western Atlantic, O. hirtae Totton and in the Eastern Atlantic, O. celata Darwin s.s.), Smilium acutum (Hoek) ($\mathbf{\nabla}$) and Altiverruca gibbosa (Hoek) (•).
except for strong longitudinal ridges at basi-lateral surface of carino-latus. Scutum conspicuously inflated at basi-occludent area, with strong tetgal arm. Caudal appendage uniarticulared.

Description

Female

Capitulum (Fig. 3A-D) covered by thin hairless cuticle; length about twice width, capitulum laterally compressed except for convex enlargement in scuta; carinal margin more convex than occludent margin. Plates thin, smooth, except for strong longitudinal ridges at basi-lareral area of carino-latus and thin sparse growth lines. Plates approximate.
Scutunn (Fig. 3A-B) conspicuously inflated in basi-occludent area, pronounced tergal arm approximately one quarter length of rergal margin, shallow groove near the apex of upper-latus; length twice width; all margins convex, except for concavity at upper portion of lateral margin; apex recurved, extending over tergum.
Tergum (Fig. 3A) triangular, apex conspicuously recurved toward.s carina; basal margin almost straight, ocdudent margin convex: surface area larger than that of scutum.
Carina (Fig. 3A, C) regularly arched, uniformly broad, rectum flat, basal portion triangular.
Upper-latus (Fig. 3A) quadrangulat; scutal margin longer than tergal; scutal margin concave, others almost straight; carino-lateral more than twice width of carinal margin.
Carino-latus (Fig. 3A, C) pentagonal, height more than twice width, umbo near base of catina, projecting slightly beyond carinal outline; basi-lateral area with strong radial ridges. Plates contiguous under carina, interdigitating.
Inframedian latus (Tig. 3A) triangular, not projecting, apex at same height as upper-latus height; height three times greater than width, bordered by low elevated ridge.
Rostro-latus (Fig. 3A, D) higher than wide; basal and scural margins diverging, latter larger, with slight apico-basal ridge separating plate into two triangular ateas.
Rostrum (Fig. 3D) elongated, almost two third length of costro-latus margin, thin, rounded at top.
Peduncle (Fig. 3A) short, length approximately
one fifth that of capitulum, covered by conspicuous laterally elongated scales.
Labrum (Fig. 3E) with single row of thirty-six small teeth. Palp (Fig. 3E) small, distally acuminate, with sparse setae on all surfaces. Mandible (Fig. 3F) with three reeth, lower :angle denticulated; distance between first and second tooth two third that between second and third. Maxilla I (Fig. 3Gr) with two steps, lower one ptojecting; upper angle with two large and two smaller spines, eight inrermediare small spines directed basally along curting border below. Maxilla II (Fig. 3H) bilobed, with simple setae along margins; maxillary gland not projectíng.
Cirrus I (Fig. 31) with anterior ramus 0.70 length of posterior one; lesser tamus with articles slightly protuberant, dothed with numerous, simple setae. Cirti II-VI with subequal to equal rami; intermediate articles of cirrus VI (Fig. 3]) 2.5 times as long as wide, armed with three pairs of simple setae and scattered small setae on anterior margin, one to two setae on postetior angle. Caudal appendage (Fig. 3K) uniarticulated, short, about one fifth height of coxopodite, with few simple setae ar apex. Number of articles of cirri I-VI and candal appendage is presented in table 1.

TABLE 1. - Number of articles of cirri I-VI, and caudal appendage of Arcoscalpellum eponkos n.sp. Holotype, stn 249. I-VI, cirri I to VI; CA, caudal appendage; RC, right cirri; LC, left cirri; + , broken ramus.

	I	II	III	IV	V	VI	CA
RC	$7 / 9$	$15 / 16$	$18 / 18$	$19+/ 20$	$23 / 21$	$21 / 20$	1
LC	$6 / 10$	$15 / 17$	$18 / 19$	$21 / 21$	$20 / 21$	$22 / 22$	1

Remarks

Arcoscalpellum eponkos n.sp. is a small species, the largest specimen reaching 9 mm in overall height. The characteristic inflated scutum with a tergal arm, longitudinal ridges restricted to the basi-lateral surface of the carino-lateral, and the uniarticulated caudal appendage distinguish this species from all other species of Arcoscalpellum s.str. Small specimens do not have the inflated scutum, but the other characteristics are already well developed.

Fig. 3. - Arcoscalpellum eponkos n.sp. Holotype: A, B, lateral and rostral views; C, carinal view of the carino-lateral and base of carina; D, rostral view of rostro-lateral and rostrum; E, labrum and palp; F, mandible; G, maxilla I; H, maxilla II; I, outline of cirrus I; J, intermediate article of cirrus $\mathrm{VI} ; \mathrm{K}$, caudal appendage. Scale bars: $\mathrm{A}-\mathrm{D}, 1 \mathrm{~mm} ; \mathrm{E}-\mathrm{H}, 0.1 \mathrm{~mm} ; I-\mathrm{K}, 0.2 \mathrm{~mm}$.

The lengthened inframedian latus and the high carino-latus suggests that this species is closely related to A. madiatum Rao et Newman, A. gry/lum Zevina, A. compositum (Zevina), A. galapaganum (Pilsbry) and A. sculptum (Hock). However, none of thesc species have a tergal arm on the scutum, except for the A. sculptum, which has a poorly developed arm. A. sczilptum also has strongly ridged plates.
Arcoscalpellum eponkos n.sp, is known only from the type-locality, West European Basin, between depths of 4620-4690m (Fig. 4).

Genus Planoscalpellum Zevina, 1978
Planoscalpellum limpidus (Zevina, 1976)

Scalpellum limpidus Zevina, 1976: 1152, fig. 2.
Planoscalpellum limpidus - Zevina 1978: 1347; 1981: 187, fig. 131; 1993a: 125.

Material examined. - Stn 245, 1 specimen, ti: $1.0 \mathrm{~cm}, \mathrm{MNHN}$ Ci 2640 . - $\operatorname{Sin} 249$, 1 specimen, tl: 1.0 cm , MNHN Ci 2645.

Remarks

Planoscalpellum limpidus occurs at depths berween $5001-5580 \mathrm{~m}$. It was recorded originally from the Azores (Zevina 1976) and later in the Antarcric (Zevina 1993a) and Jberian Basin (Young in press). The present new records extend the northern distribution to $45^{\circ} 50^{\prime} \mathrm{N}$ and indicate a shallower depth of 4270 m . P. limpidus is redescribed and discussed in detail by Young (in press).

Genus Catherinum Zevina, 1978
Catherinum recurvitergum (Gruvel, 1900a) (Figs 4-5)

Scalpelhum recurvitergum Gruvel, 1900a: 190; 1902a: 67, pl. 2, figs 3h, 21-22; 1902c: 523; 1905: 49, fig. 54. - Welmer 1922: 72. - Nilsson-Cantell 1938: 8; 1955: 218. - Zevina 1976: 1155.
Catherinum recurvitergum - Zevina 1978: 1348; 1981: 245, fig. 181.

Material examined. - Stn 202, 1 specimen and 1 scutum, tl: $1.6 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2616$. - Sin 245 , 3 specimens, $\mathrm{t}: 1.1-1.3 \mathrm{~cm}$, MNHN Ci 2641, MNRJ 8878.

Description

Female

Capitulum (Fig. 5A-C) covered by thin hairless cutiele; length twice its width, width uniform; carinal and occludent margins convex, with same curvature. Plates with thin, sparse growth lines, with longitudinal ridges variously developed, ridges absent in specimens up to 10 mm in length, slightly elevated in specimens of about 13 mm , conspicuous and strong in specimens of 15 mm . Plates approximate, cuticle separating carina from other plates.
Scutum (Fig. SA) with occludent margin convex, with shallow groove near apex of upper-latus; scutal length rwice width; tergal arm small, about one fifth length of tergal margin; tergal margin equal to length of basal margin, wirh small upper rim; carinal and occludent margins convex, except for concavity at upper portion of former; apex curved, extendiry slightly over tergum.
Tergum (Fig. 5A) triangular, with longitudinal ridges more developed at occludent area; basal margin almost straight, occludent margin convex, carinal irregular; apex recurved in small specimens, acute or croded and obtuse in large specimens, slightly recurved toward carina; surface area of tergume equal to that of scutum.
Carina (Fig. 5A, B) regularly arched, broader apicaly, tectum slightly concave, bordered by two low longitudinal ribs, basal portion tounded.
Upper-latus (Fig. 5N) pentagonal. Length of scutal margin greater than tergal one fotmer concave. All other margins essentially straight, carino-lateral longest, followed in size by tergal and inframedian margins. Apex with small upper rim.
Rostro-latus (Fig. 5A, C) wider than high; basal and scutal margins diverging, scutal margin greater in length than basal margin, apico-basal ridge separating plate into two triangular surfaces.
Carino-latus (Fig- 5A, B) pentagonal, higher than wide, umbo near base of carina, umbo projecting slightly beyond carinal margim. Plates contiguous under carina.

Fig. 4. - Geographic distribution of Arcoscalpellum eponkos n.sp. (จ), Catherinum recurvitergum (Gruvel) (\bullet) and Teloscalpellum luteum (Gruvel) (\$).

Inframedian latus (Fig. 5A) vase-shaped, umbo subcentral, apical portion higher and wider than basal porrion.
Rostrum (Fig. 5C) elongate: length almost two third that of rostro-latus margin; thin, apically rounded.
Peduncle (Fig. 5A) about one quarter length of capitulum, covered by conspicuous lengthened scales.
Labrum (Fig. 5D) with row of forty-four small teeth. Palp (Fig. 5D) small, paddle-like, with setae on all surfaces.
Mandible (Fig. 5E) with three teeth, lower angle
denticulated; distance between first and second teeth less than twice that between second and third one.
Maxilla I (Fig. 5F) with straight border, two large and thick spines at upper ang/e, nine moderate to small spines difected downwards below.
Maxilla II (Fig. 5G) triangular with finely pinnate setae along margins; maxillary gland projecting prominently.
Cirrus 1 (Fig. 5 H) with shorter ramus 0.75 length of longer; articles little protuberant, clothed with numerous simple setae.
Cirri II-VI with subequal to equal rami, interme-
diare articles of cirrus VI (Fig. 5I, J) twice as long as wide, wirh three or four pairs of simple setae and scartered small serae on anterior matgin, pairs of serae more developed along the posterior ramus; one to rwo setae on posterior angle. Caudal appendage (Fig .5 K) multiarticulated (7-8), almost twice length of protopod, simple setae at distal point, a few setae on distal margins of articles.
Number of articles of cirri I-VI and caudal appendage is presented in table 2 .

Table 2. - Number of articles of cirri I-VI, and caudal appendage of Catherinum recurvitergum (Gruvel), stn 202. I-VI, cirri I to VI; CA, caudal appendage: RC, right cirri; LC, left cirri; + , broken ramus.

	I	II	III	IV	V	VI	CA
RC	$8 / 10$	$17 / 19$	$14+/ 15+$	$22 / 14+$	$22 / 23$	$23 / 16+$	8
LC	$8 / 10$	$16 / 16+$	$20 / 22$	$12+/ 23$	$15+/ 22$	$23 / 23$	7

Remarks

The specimen described by Gruvel (1902a) is 11 mm in capitulum lengrh and was illustrated wirhour longitudinal ridges. However, in his description Gruvel stated that the plates had conspicuous radial lines.
The present specimens examined range from 10 to 16 mm in capitulum lengrh, and it is apparent that the development of the longitudinal ridges increases during ontogeny.
The smallest specimen (10 mm) has only a few longitudinal ridges on the plates and the largest (16 mm) has such ridges on all plates except for the carina (Fig. 5A).. Otherwise, the apex of the recurved tergum noted by Gruvel (1902a) is not as recurved in the specimens examined.
Catherinum mecurvitregum was originally described from rhe Azores from 3175 m (Gruvel 1900a; 1902a) and subsequenrly only recorded from eastern Africa from 1289 m (Weltner 1922). Welrner did not describe or figure his specimens. The specimens sampled are from the type localiry, Azores region (Fig, 4), between 2900 and 4270 m , which extends the depth range of this species.

Genus Amigdoscalpellum Zevina, 1978
Amigdoscalpellum rigidum (Aurivillius, 1898)
Scalpellum rigidum Aurivillius, 1898: 189. - Gruvel 1905: 86. - Zevina 1976: 1155.

Sorafolfum striatum Cruvel, 1900a: 191; 1902a: 77, pl. 2, fig. 31; 1905: 72, fig. 81; 1920: 23, pl. 2, figs 4-6, 9-11; pil. 7. fig. 11. - Nilsson-Cantell 1955: 219. - Belloc 1959: 3.

Amizdoscalpellum rigidum - Zevina 1978: 1349; 1981: 277, fig. 209.

Materias. examined. - Sm 174, 2 specimens, il: 2.0 and $2.1 \mathrm{~cm}, \mathrm{MNHN}$ Ci 2590 . - Sm 176, 1 specimen, tl: $2.7 \mathrm{~cm}, \mathrm{MNHN}$ Ci 2592. - Stn 202, 17 specimens, tl: $1.5-3.7 \mathrm{~cm}$. MNHN Ci 2615, MNRJ 8879. - Stn 206. 1 specimen, t: 2.5 cm , MNHNCi 2618. $-\operatorname{Son} 227,1$ specimen, $\mathrm{t}: 4.0 \mathrm{~cm}$, MNHN Ci $2625 .-\operatorname{Smn} 245.1$ specimen, tl: 2.6 cm , MNHN Ci 2637. - Stm 251. 2 specimens, tl: 2.1-2.4 cm, MNHN Ci 2647.

Remarks

Amigdoscalpellum rigidum appears to be a common deep-sea species from the Azores, Cape Verde, and the lberian Basin, occurring berween depths of 1267-4400 m (Aurivillius 1898; Gruvel 1905: Young in press). It was also recorded once from the Newfoundland Basin, from 1267 m (Aurivillius 1898). The new samples extend its distribution to the West European Basin. A. rigidum is redescribed and discussed by Young (in press).

Genus Trianguloscalpellum Zevina, 1978
Trianguloscalpellum ovale (Hoek, 1883)
Scalpellum regitum var. ovale Hoek, 1883: 109, pl. 5, figs 5-6.
Triangulascalpellum regium ovale - Zevina 1981: 311, fig. 235.

Matrial examined. - $\operatorname{Stn} 249,2$ specimens, tl: 3.3 and 4.9 cm , MNHN Ci 2644.

Remarks

T. onale is redescribed and discussed in detail by Young (in press) who presents a key for the related species. This new sample does not add any

Fig. 5. - Catherinum recurvitergum (Gruvel). A, lateral view; B, carinal view; C, rostral view; D, labrum and palp; E, mandible; F, maxilla I; G, maxilla II; \mathbf{H}, outline of cirrus I; I, J, intermediate article of anterior and posterior rami of cirrus VI ; \mathbf{K}, caudal appendage. Scale bars: A-C, H, K, 1 mm ; D-G, I-J, 0.2 mm .
information about the North Atlantic deep sea distribution of this species.

Trianguloscalpellum regium (Thomson, 1873)
Scalpellom regium 'Thomson, 1873: 347 (part); 1877: 4 (part). - Hoek 1883: 106, pl. 4. figs 3-5, pl. 9, fig. 12, pl. 10, figs 1-2; 1884: 10. - Pilsbry 1907a: 28, pl. 3, fig. 5 (part). - Gruvel 1912a: 2; 1920: 30, pl. 1, fig. 7.
Scalpellum molle Aurivillius, 1898: 191.- Gruvel 1905: 76; 1920:29. pl. 5, figs 10-12. - NilssonCantell 1955: 218. - Z.cvind 1976:1155; 1981:309.
Trianguloscalpcllum regium - Kevina 1978: 1350. - Foster \& Buckeridge 1995a: 167, figs 2A-D, 3.

Triangulastalpellum regium reginm - Zevina 1981: 309, fig. 234.

Material examined. - Stn 129, 3 specimens, tl: 1.3-4.3 cm, MNHN Ci 2566. - $\operatorname{Stn} 202,27$ specimens, tl: up to 6.4 cm , MNHN Cí 2617, MNRJ 8880. - $\operatorname{Stn} 245,9$ specimens, tl: 0.4-7.0 cm. MNHN Ci 2638. - Sin 251, 3 specimens, t1: $1.7-5.4 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2648$.

Remarks

In the smaller specimens the upper flange of the carino-latus does not appear to be as well developed as in the larger specimens described by Young (in press). The roof of the carina changes in shape from flat with a central elevation in smaller specimens to flat with lateral ridges in larger ones.
T. regium is redescribed in detail and discussed by Young (in press). The present samples do not add new information regarding its North Atlantic deep-sea distribution.

Genus Teloscalpellum Zevina, 1978
Teloscalpellum luteum (Gruvel, 1900a)
(Figs 4, 6)
Scalpellum luteum Gruvel, 1900a: 192; 1902a: 80, pl. 2, fig. 11; 1905: 84, fig. 93. - Nilsson-Cantell 1955: 218. - Zevina 1976: 1155.

Teloscalpellum luterm-Zevina 1978: 1350; 1981: 363, fig. 280.

Material examined. - Stn 129, 1 specimen, tl: 3.0 cm , MNHN Ci 2567.

Description
 Ferate

Capirulum (Fig. 6A, B) covered by thin hairless cuticle; length less than twice its width, breadth uniform; carinal margin more convex than occludent. Plates with strong longitudinal ridges and thin, sparse growrh lines. Narrow curicle separating most of plates.
Scutum (Fig. 6A) convex only at occludent area; height less than twice width; lateral margin longer than basal, sinuous; basal and occludent margins convex, tergal slightly concave; apex curved, extending over tergum.
Tergunn (Fig. 6A) triangular, with longitudinal ridges developed only at occludent side; basal margin almost straight, occludent margin conves, carinal with depressed area near the carinal apex; apex obruse, slightly turned roward carina; surface area grearer than scutum.
Carina (Fig. 6A) regularly arched, tectum concave, bordered by high longitudinal rib, basal portion absent in specimen, therefore 1 could not observe its shape.
Upper-latus (Fig. 6A) penragonal. Scutal and tergal margins equal in length, former concave. All other margins almost straight, carino-lateral longest, followed in size by tergal and inframedian margins. Umbo subapical. Apex thickened, forming upper ridged rim.
Rostro-latus (Fig. 6A, B) wider than high; basal and scutal margins parallel, latter longer; apices of plares overlapping.
Carino-latus (Fig. 6A) pentagonal, higher than wide, umbo near base of carina, not projecting from carinal ourline. Plates contiguous under carina.
Inframedian latus (Fig. 6A) triangular, length twice its width, apex slightly turned anteriorly, with rim along carinal side.
Rostrum (Fig. GB) absent.
Peduncle (Fig. 6A) about one half length of capitulum, covered by conspicuous lengthened scales and thick curicle.
Labrum (Fig. 6C, D) with row of small teeth. Palp (Fig. 6C) small, acuminate, with few setae on upper margin and terminally. Mandible (Fig. 6E, F) with three teeth, with or without large tooth between first and second teeth, denticulated lower angle with few teeth; distance bet-

Fig. 6. - Teloscalpellum luteum (Gruvel). A, lateral view; B, carinal view; C. D. tabrum and palp: E, F, mandibles; G, maxilla I; H , maxilla II; I, cirrus I; J, intermediate article of cirrus VI; K, caudal appendage. Scale bars: A-C, H, K, $1 \mathrm{~mm} ; \mathrm{D}-\mathrm{G}, \mathrm{I}, \mathrm{J}, 0.2 \mathrm{~mm}$.
ween first and second teeth twice distance between second and third one; setulation absent, only small scales on lower margin. Maxilla I (Fig. 6G) with straight anterior border or upper portion projecting slightly, with two large and thick spines at upper angle, nine to rwelve moderate to small spines directed basally below. Maxilla II (Fig. 6 H) nearly quadrangular with finely pinnate setae along margins; maxillary gland projecting prominently.
Cirrus I (Fig. 6l) with anterior ramus 0.65 of length of posterior one; arricles of shorter ramus protuberant, both rami clothed with numerous simple setae. Cirri II-VI with equal rami, intermediate articles (Fig. GJ) about rwice as long as wide, wirh three or Four pairs of simple setae and scattered small sctae on anterior margin, one to two setae on postcrior angle, one or two simple setae on posterior margin, Caudal appendage (Fig. 6K) multiarticulated (8), slightly longer than protopod, with simple sctac at distal point, few setze on distal margins of articles. Number of articles of cirri 1-VI and caudal appendage is presented in table 3.

Table 3. - Number of articies of cirri I-VI, and caudal appendage of Teloscalpellum futeum (Gruvel), stn 129. I-VI, cirri I to VI; CA, caudal appendage; RC, right cirri; LC, left cirri; +, broken ramus.

	I	II	III	IV	V	VI	CA
RC	$9 / 10$	$12+/ 20$	$22 / 22$	$28 / 30$	$30 / 31$	$33 / 28$	8
LC	$9 / 10$	$17 / 19$	$24 / 25$	$28 / 31$	$28 / 33$	$34 / 29$	8

Remarks

Teloscalpellum luteum (Gruvel) is known only by one specimen, capitular length 20 mm , from the type locality - Azores - at 3175 m (Gruvel 1900 a, 1902a). Gruvel did not illustrate the longitudinal ridges of the plates, but did describe this character. These longitudinal ridges are conspicuous in the specimen studied.
The general shape of the capitular plates, especially the coronate upper-latus, agree with the description of Gruvel (1902a). The basal portion of the catina, where it meers the carinal latera, is absent in the specimen and, therefore, 1 could not observe the relationship of the carinal-latera.
T. luteum was collected in the same area as the type specimens (Azores), and from a similar depth ($3056-3000 \mathrm{~m}$; Fig. 4).

Order SESSILLA Lamarck, 1818
Suborder VERRUCOMORPHA Pilsbry, 1916
Family Verrucidae Darwin, 1854
Genus Altiverruca Pilsbry, 1916
Altiverruca obliqua (Hoek, 1883)
(Figs 7-9)
Verruca obligua Hock, 1883: 143, pl. 12, figs 15-17. - Weltner 1897: 274. - Gruvel 1905: 173, fig. 191. - Hoek 1907b: 9.
Verruca obliqua, secrion D - Altiverruca - Pilsbry 1916:40.

Altiverruca obliqua - Buckeridge 1994: 93.
Altivermea vertica - Foster \& Buckeridge 1995a: 180, fig. 14.

Material. examined. - Stn 180, 1 specimen without eggs or larvae, rc: $0.6 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2595$.

DEsCRIPTION

Shell (Fig. 7A-C) white, smooth, growth lines widely spaced, not projecting. Opercular valves angularly placed, approximately 45^{n} to basis (Fig. 7D), Base calcareous, Rostrum and carina (Fig, 7C) convex with apices projecting, latter higher; surure sinuose. Fixed-tergum (Fig. 7B) triangular, wider in middle, higher than fixed-scutum, with two well developed alate projections, little covered by radii like projections of adjoining plates, Fixed-scutum (Fig, 7B) triangular, with well developed alare projection on to rostrum, covered by small radius-like projection of this plate; internally smooth.
Scutum smaller than tergum, basal margin one half length of tergum margin. Scutum (Fig. 7E) with two articular ridges, and flat upper triangular projection at occludent margin; axial ridge barely developed and curved; rostral area smooth. Internally, with deep depression fot adductor muscle; occludent margin with small tooth at lower portion formed by second articular ridge. Tergum (Fig. 7F) quadrangular, with three articular ridges; axial ridge narrowest, intermediate
ridge broad, separated from upper ridge by conspicuous groove. Internally, surface slightly concave; occludent margin nearly straight, except for upper convex portion.
Labrum (Fig. 8A) with one series of forty teech. Palp (Fig. 8A) long, few simple setae at upper margin and distal area. Mandible (Fig. 8B) with
three teeth, distance between the first and second one twice that betwecn the second and third one; lower angle denticulated. Maxilla I (Fig. 8C, D) straight or with the lower part projecting, with 10 to 13 unpaired spines. Maxilla II triangular, anterior margin concave medially, posterior margin convex; covered by long simple setae.

Fig. 7. - Altiverruca obliqua (Hoek). A, top view; B, carino-rostral view; C, fixed-tergum and fixed-scutum view; D, fixed-scutum and rostral view; \mathbf{E}, \mathbf{F}, tergum and scutum, internal view. Scale bars: 2 mm .

Fig. 8. - Altiverruca obliqua (Hoek). A, labrum and palp; B, mandible; C, D, maxillae I; E, cirrus I; F, cirrus II; G, intermediate article of cirrus $\mathrm{VI} ; \mathrm{H}$, caudal appendage and penis. Scale bars: A-D, G, $0.1 \mathrm{~mm} ; \mathrm{E}, \mathrm{F}, \mathrm{H}, 0.3 \mathrm{~mm}$.

Cirrus I (Fig. 8E) with anterior ramus a little longer than posterior, articles of borh rami covered by numerous long, simple setae. Cirrus II (Fig. 8F) with unequal rami, anterior two third length of posterior, with protuberant arricles; anterior ramus covered by numerous long, simple setae, posrerior with setation similar to articles of cirri JII-VI. Cirrus 111 with subequal rami, cirri IV-VI with equal rami. Lengrh of intermediate article of cirrus VI (Fig. 8G) rwice width, with two pairs of simple serac on anterior margin, one or two short, stout setae on posterior angle, multifid scales at distal margins. Caudal appendage (Fig. 8H) multiarriculated, with six to seven arricles, one half length of coxopodite. Penis (Fig. 8H) short with few setulae. Number of articles of cirri I-VI and caudal appendage is presented in table 4.

TAble 4. - Number of aricies of cirri I-VI, and caudal appendage of Ativerruca obliqua (Hoek), sti 180. I-VI, cirri I to VI; CA, caudal appendage: RC, right clri; LC, left cirril.

	I	II	III	IV	V	VI	CA
RC	12/10	$9 / 11$	$15 / 16$	$16 / 16$	$17 / 18$	$20 / 20$	7
LC	$10 / 10$	$8 / 9$	$13 / 13$	$17 / 17$	$17 / 19$	$19 / 20$	6

Remarks

Hoek (1883) described A. obliqua based on four small specimens collected off southwestern Spain at a depth of 2782 meters. This species has not been collected since.
This species was recently considered a synonym of A. quadrangularis (Hoek, 1883) by Foster \& Buckeridge (1995b), but this conclusion seems to be premature. Altiverruca quadrangularis, first reported from the Southern Atlantic, is now

FIG. 9. - Geographic distribution of Altiverruca obliqua (Hoek) (v), Metaverruca aequalis (Aurivillius) ($\boldsymbol{\bullet}$) and Metaverruca trisulcata (Gruvel) (■).
known from all the oceans (Lahille 1910; Gruvel 1920; Zevina 1988; Rosell 1989; Foster \& Bucketidge 1995b).
Considering the original descriptions of both species, sevetal characters distinguish them. Both have a tetgum with three articular ridges, but A. obligut has the intermediate ridge (scoond of Hoek) broad, leaving a thin groove between this ridge and the first one. Alternarively, A. quadrangularis has the second ridge narrow, with a very broad space separating it from the first ridge. The scutum of A. obliqua is proportionately narrower, its base one half the width of the base of tergum. In A. quadrangularis the movable scutum is significantly larger, with its width more than two third of the width of the base of the tergum. The axial ridge (third ridge of Hoek) is prominent in A. guadrangularis, but it is barely discernible in A. obliqua. Therefore, this synonymy cannot be accepted.
The single specimen I examined is older and hence more developed than the specimens Hoek studied. All of the differenccs I observed appcat to be relared to different stages of groweh: the carina projects frecly as does the scutum; the articulation between carina and rostrum has more than one single tooth.
Foster \& Buckeridge (1995a) described Altiverruat uertica from the Straits of Gibraltar. Its opetcular valves are identical to those examined here, differing only in the carina-rostrum suture. This suture is straighter than the one observed, but this may be due to ontogeneric differences. Furthermore, the relative length of the rami of cirri I-III and the caludal appendages are similar to the ones I obsetved. Hoek (1883) did not describe the appendages of A. nfliquat.
The distribution of this species is restricted to the Northeastern Atlantic, between 34° to $37^{\circ} \mathrm{N}$ and 7° to $25^{\circ} \mathrm{W}$ (Fig. 9).

Altiverruca gibbosa (Hock, 1883)
(Figs 2, 10)
Verruca gibbosa Hock, 1883: 134, pl. 6, figs 17, 18, pl. 11, figs 5-9, pl. 12, figs 1-5.
Verruca (Altiverruca) gibbosa - Newman \& Ross 1971: 135, pl. 14, textfig. 68 (synonymy).

Altiverruca gibbosa-Levina 1987a: 1813.
Material examined. - Sm 6, 1 empry shell, tc: 0.3 cm, MNHN Ci 2550. - Stn 159. 1 specimen, re: $0.4 \mathrm{~cm}, \mathrm{MNHN}$ Ci 2584 . - Sin 180, 2 specimens, re: $0.4-0.6 \mathrm{~cm}$, MNHN Ci 2596, MNRJ 8903. - Sin 196, 1 specimen, re: 0.5 cm , MNHN Ci 2603. - Stn 199, I specimen, rc: 0.5 cm , MNHNCi 2610.

Remarks

The specimens studied (Fig. 10A, B) do not presont any differences from the specimens described by Hoek (1883).
A. gibbonst has a world-wide distribution and was previously recorded in the Eastetn Atlantic from off the Straits of Gibraltar, Canaries and Cape Verde Islands and Sicrra Leone Rise (Fig. 2) (Gruvel 1902a, as V. sulcata; Nilsson-Cantell 1927, as V. rathbuniana; Nilsson-Cantell 1928; Foster \& Buckeridge 1995a).

Fig. 10. - Altiverruca gibbosa (Hoek). A, top view; B, fixedtergum and fixed-scutum view. Scale bar. 1 mm .

Genus Metaverruca Pilsbry, 1916
Metaverruca aequalis (Aurivillius, 1898)
(Figs 9, 11-12)
Verruca aequalis Aurivillius, 1898: 196. - Gruvel 1905, 176 ; 1920: 42, pl. S, figs 28-29, pl. 6, figs 6-7. - Hock 1907b: 9. - Bclloc 1959: 4.

Material examineld. - Sin 171, 1 specimen, rc: $0.5 \mathrm{~cm}, \mathrm{MNHN}$ Ci 2589 - $\operatorname{Stn} 174,1$ specimen, rc; 0.4 cm , MNIJN Ci 2591. - Stm 180, 4 specimens, re: $0.5-0.6 \mathrm{~cm}$, MNHN Ci 2598 , MNRJ 8904. - Str 196, 3 specimens, re: $0.5-0.6 \mathrm{~cm}$, MNHN Ci 2605, MNRJ 8905.

Description

Shell (Fig. 11A, B) white, nearly smooth, grooves only along the suture between rostrum and carina; growth lines widely spaced, projecting; basal margins thickened, inflected (Fig. HC). Cuticle
hairy, persistent on shell and opercular valves. Opercular valves parallel to base of wall.
Rostrum (Fig. 11A) larger than carina, with small radius-like projection toward fixed scutum; articulation with carina with large upper ridge and undulating downwards; shallow grooves beside ridge; apex projecting. Catina (Fig. 11A) with small radius-like projection toward fixed-tergum, onc upper ridge undulating downwards at rostral suture, one groove under the ridge; apex reflexed. Fixed-tergum (Fig. 11A, B) smaller than fixed-rostrum, approximately one half its width, both sides with well developed alar-like projections; apex projecting backwards. Fixed-scutum (Fig. 11A, B) with wide alar-like projection directed toward rostrum, small radii-like projecrion to fixed-tergum; internally, with well developed myophore, directed downwards.
Tergum (Fig. 11A, D) quadrangular, with three

Fig. 11. - Metaverruca aequalis (Aurivillius). A, top view; B, fixed-tergum and fixed-scutum view; C, basal view; D, E, tergum and scutum, internal view. Scale bars: 2 mm .
articular ridges; axial ridge narrowest, well marked, intermediate and upper ridges broad. Internally, smooth; oceludent margin slightly undulated. Scutum (Fig. 11A, E) smaller than tergum; with three articular ridges; axial ridge barely developed, near occludent margin, intermediate ridge twice width of upper ridge, latter poorly developed; rostral area smonth. Internally, with conspicuous rounded scar for adductor muscle, especially near articular margin, forming a vertical crest between them; occludent margin nearly straight, except for a protuberance at lower part.
Labrum (Fig. 12A) with seties of small teeth (47). Palp (Fig. 12B) short, acuminate, with few simple setae on upper margin and distal region. Mandible (Fig. 12C) with three teeth, discance between first and second mote that twice distance betweer the second and third ote; lower angle denticulated. Maxilla I (Fig. 12D) with lower part projecting, shallow concavity apically: two large spines at upper angle, four small spines in concaviry, seven to nine unpaired spines on lower portion. Maxilla II (Fig. 12E) rectangular, anterior margin with shallow concavity medially; covered by long simple setae.
Cirrus I (Fig. 12F) with subequal rami, covered with several long simple setae. Cirrus II (Fig. 12G) with anterior ramus two third length of posterior, articles more protuberant; both sami covered by numerous long, simple setae, anterior ramus also with finely bipectinate setae at distal article (Fig. 12H). Rami of cirrus 1 II unequal. anterior shorrer than posterior. Rami of cirri IV-VI equal in length. Intermediate articles of cirrus VI (Fig. 12I) with width three quarters of the length, two pairs of setac, longer setae finely pinnate, on anterior margin: one or two short, stout setae on posterior angle, multifid scales at distal margin. Caudal appendage

Table 5. - Number of articles of cirri I-III, and caudal appendage of Metaverruca aequalis (Aurivillius), $\sin 195$. I-III, cirri I to III; CA, caudal appendage; RC, right cirri; LC, left cirri.

	I	II	III	CA
RC	$10 / 9$	$8 / 10$	$14 / 16$	6
LC	$10 / 9$	$8 / 10$	$14 / 16$	6

(Fig. 12J) with six articles, one half length of coxopodite; long simple setae on distal margins of articles. Penis about same length as coxopodite, clothed with thin setulae. Number of articles of cirri I-III and caudal appendage is presented in table 5.

Rfmarks

Metaverruca atqualis was described briefly by Aurivillius (1898), but was subsequently described in detail and figured by Gruvel (1920), based on the same material. The specimens examined herein agree with the description by Gruvel (1920). I can only add that the hairy cuticle is conspicuous in smaller specimens.
Gruvel (1920) did not dissect any specimen. Therefore, he did not describe the internal morphology of the shell, the opercular valves, and the appendages. The presence of a developed myophore on the fixed-scutum, the box-like shape of the wall with its inflected basal margins and the large operculat valves, indicate that the species is a Metavertuca.
Metaverruca aequalis is known only from the Azores, between depth of 1022 and 1385 m . All the samples studied are from the same area, but its depth distribution is increased to 3215 m (Fig. 9).

Metaverruca recta (Aurivillius, 1898)

Verruca recta Aurivillius, 1898: 195. - Gruvel 1905: 181: 1912a: 6: 1920: 46, pl. 2, fig. 18, pl. 3, figs 3.4. - Hoek 1907b 9. - Southward \& Southward 1958: 637, fig. 4. - Anderson 1980: 349, figs 1-4.
Verruca sculpta Aurivillius, 1898: 197. - Gruvel, 1905: 175; 1920: 41, pl. 5. figs 26-27. - Hoek 1907b: 9. - Nilsson-Cantell 1929: 461, fig. 1; 1938: 12. - Kriiger 1940: 463. - Zevina 1969: 68. - Weisbord 1979: 97. - Foster 1981; 352. - Ren 1984: 166, fig. 1, pl. 1, figs 1-6; 1989; 420. fig. 10.
Verruca linearis Gruvel, 1900b: 243; 1902a: 107, pl. 5, figs 11-12; 1905: 182, fig. 201. - Hock 1907b: 9.

Verruca capsula Hoek, 1907a: 130, pl. 12, figs 1-3, pl. 13, Gigs 1-4. - Stubbings 1936: 38. - Weisbord 1979: 98.
Verruca magna Gruvel, 1901: 261; 1902a: 109, pl. 5, figs 1-2; 1905: 184, figs 204-205. - Hoek 1907b: 9. - Gruvel 1920: 50. - Weisbord 1979: 98.

Fig. 12. - Metaverruca aequalis (Aurivillius). A, labrum; B, palp; C, mandible; D, maxillae I; E, maxillae II; F, cirrus I; G, cirrus II; H, distal article of anterior ramus of cirrus II ; I, intermediate article of cirrus VI ; J, caudal appendage. Scale bars: A-E, H, I, $0.1 \mathrm{~mm} ; \mathrm{F}, \mathrm{G}$, $\mathrm{J}, 1 \mathrm{~mm}$.

Verruca hatotheca Pilsbry, 1907b: 188, pl. 4, figs 9-10; 1916: 46, pl. 8, figs T-1a. - Kolosváry 1943: 73. - Zullo 1968: 219. - Gordon 1970: 118. - Buckeridge 1975: 129, figs 5. 4-6. - Foster 1978: 69, pl. 8F, tig. 42. - Weisbord 1979: 98.
Verruca coraliophila Pilsbry. 1916: 21, pl. 1, figs 1-5. - Zullo 1968: 219. - Bayer et al. 1970: A43. - Weisbord 1979:96.

Verruca (Metaverruca) sculpta - Broch 1931: 41. - Buckeridge 1983: 59, fig. 45.

Verruca (Mataverruca) cookei - Rosell 1981: 299, pl. 11, figs r, s, u, v; 1991: 33 (not Verruca cookei Pilsbry, 1927).
Metaverruca recta - Buckeridge 1994: 116, fig. 13a-f. - Foster \& Buckeridge 1995a: 182, fig. 15; 1995b: 368. fig. 'C-E.

Material examineo. - $\operatorname{Sin} 4.8$ specimens and 10 empry shells, re: $0.6-0.9 \mathrm{~cm}$, MNHN Ci 2549. Stn 16, i specimen, re: $0.6 \mathrm{~cm}, \mathrm{MNHN}$ Ci $2555 .-$ Stn 62, 3 empty shells, rc: $0.6-0.7 \mathrm{~cm}$, MNHN Ci 2560 . - Stn 66, 1 empry shell, re: 0.8 cm , MNHN Ci 2561, - Sun 135, 1 specimen, re: 0.7 cm , MNHN Ci 2570 . - Sul 139, 1 empry shell, rc: 0.7, MNJIN Ci 2571. - Stn 148, 101 specimens and 12 empty shells, rc: $0.5-0.9 \mathrm{~cm}$, MNHN Ci 2576. MNRJ 8906. - Smn 150, 2 specimens and 1 empry shell, re: $0.6-0.6 \mathrm{~cm}$, MNHN Ci 2578 . Sto 151, 27 specimens and 1 empty sheli, re: $0.5-0.9 \mathrm{~cm}, \mathrm{MNHNCi} 2580$, MNRJ 8907. Stn 159, 1 specimen, re: 0.3 cm , MNHN Ci 2585, - Son 161, 1 spocimen, re; 0.7 cm , MNHN Ci 2664 . - 501168,9 specimens and 4 empry shells, re: 0.5-0.8 cm, MNHN Ci 2588. Stn 180, 19 specimens and 5 empry shells, re: $0.6-1.2 \mathrm{~cm}$, MNUIN Ci 2597. MNRJ 8908. Stn 181, 4 specimens and 1 empty shall, re: $0.6-0.7 \mathrm{~cm}, \mathrm{MNHN}$ Ci 2600 . - Sill 196,10 specimens and 18 empty sheils, rc: $0.6-1.0 \mathrm{~cm}$. MNHN Ci 2604. - Stn 197, re: 0.5-0.8 cm, MNHN Ci 2607. - Stn 199, 1 specimen, re: 0.4 cm , MNHN Ci 2611. - Stn 218.2 specimens and 1 empey shell, re: $0.6-0.7 \mathrm{~cm}$, MNHN Ci 2622 . Srn 231, 1 empty shell, ic: 0.7 cm . MNHN Ci 2626. - Srn 237, 1 specimen and 5 empry shells, rc: $0.6-0.7 \mathrm{~cm}, \mathrm{MNH} \mathrm{Ci} 2629$. - $\operatorname{Srn} 239,10$ specimens and 4 empry shells, tc: $0.6-0,9$, MNHN Ci 2632. - Sm 240, 78 specimens and 10 emply shells, rc: $0.5-0.8 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2634$, MNRJ 8909. - Stn 255, 2 specimens, rc: $0.9-1.1 \mathrm{~cm}$, MNHN Ci 2650.

Remarks

Metaverruca recta is the most common deep-sea verrucid found in the Azores region. It was collected from over several distinct substrates, such
as pumice stones, shells, corals, and urchin spines. It has a world-wide distribution, and was recorded many times from the Northeastern Adlantic, including the Azores from 240 to 2100 m (Aurivillius 1898: Gruvel 1912a, 1920; Southward \& Southward 1958; Foster \& Buckeridge 1995a; Young in press).
The specimens studied do not present significant differences from those observed by other authors. The white shell is totally smooth, and has a straight hinge between the opercular valves and the rostrum and carina, characters which are diagnostic for this species.

Metaverruca trisulcata (Gruvel, 1900b)

(Figs 9, 13-14)
Verruca trisulcata Gruvel, 1900b: 243; 1902a: 96, pl. 5, figs 9-10; 1905: 184, fig. 203; 1912b: 348; 1920: 49. - Hoek 1907b: 9.
Verruca striana Gruvel, 1900b: 244; 1902a: 98, pl. 5, figs 5-6, rextig. 17-18; 1905: 183, fig. 186, 202. - Hock 1907b: 9. - Subbings 1967: 251.
not Metaverruca trisulcata - Foster \& Buckeridge 1995a: 177, figs 10-12: 1995b: 363, fig. 9d-b.

Material examiffo. - Sin 197, 2 specimens, re: 0.5 cm, MNHN Ci 2608, MNRJ 8910. - $\operatorname{Stn} 240$, 1 specimen, re: $0.4 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2635$.

DESCRIPIION

Shell (Fig. 13A, B) white, curicle not persistent, ornamented with several strong longitudinal ridges and spaced growth lines, ridges on opercular plates and at suture of rostrum aud carina conspicuous. Opercular plates parallel to basis. Basal margin of wall nor inflected.
Fixed-rergum (Fig. 13A, B) smaller than fixed-scuturm, apex thickened, recurved ourward; with two developed alate projections and triangular central area, with four to five longitudinal ridges.
Fixed-scutum (Fig. 13A, B) having central triangular area with four to five strong longitudinal ridges, well developed alate projection at rostral surure area, radius-like projection at fixedtergum side; apex thickened, recurved outward. Internally, with well developed myophore.
Carina (Fig. 13A) same size as rostrum, with about ten strong longitudinal ridges and well
developed ridge area at suture with rostrum, with four interlocking teeth, che largest being usually the second; smooth suture with fixed-tergum.
Rostrum (Fig. 13A) with many sttong longitudinal ridges, well developed ridged area at suture with carina, with four interlocking teeth, the first one being the largest, smooth suture with fixedscutum.

Tergum (Fig. 13A, C) larger than scutum, nearly quadrangular, with three articular ridges; axial ridge highest and as wide as second, distance between ridges equal, groove between first and second ridges greater than between second and third ones; no ridges at carinal area. Internally, surface flat and smooth; scutal margin slightly concave, with median tooth.

Fig. 13. - Metaverruca trisulcata (Gruvel). A, top view; B, fixed-tergum and fixed-scutum view; C, D, tergum and scutum, internal view. Scale bars: 1 mm .

Scutum (Fig. 13A, D) with three arricular ridges, third ridge thin, sloping continuously to rostral area, no ridges at rostral area; apex pointed, directed toward tergum. Internally, tergal margin nearly straight, with tooth at lower third; surface with conspicuous upper depression, including adductot muscle pit.
Labrum (Fig, 14A) with series of irregular teeth. Palp (Fig. 14a) short, acuminated, with few simple serac on upper margin and distal region. Mandible (Fig. 14B) with three teeth, distance between first and scoond teeth twice distance between the second and third ones; lower angle denticulated. Maxilla I (Fig, 14C) with lower part projected; two large spines and five small spines on upper edge of cutting edge and thirteen moderate to small unpaired spines on lower part. Second maxilla not observed.
Cirrus I (Fig, 14D) with subequal rami, anterior slightly longer than posterior one; both with protuberant articles covered by long, simple setae. Cirrus 11 (Fig. 14E) with anterior ramus about two third length of posterior, with articles more protuberant; both rami covered by long, simple setae. Cirri III with unequal rami, anterior shorter than posterior; cirri with rami of IV-VI equal length. Intermediate articles of cirrus VI with width about two third length, three pairs of long setae on anterior margin, two sctac on posterior angle. Caudal appendage (Fig, 14F) multiarticulated, seven articles, one half length of coxopodite; long simple setae on distal margins of articles. Number of articles of cirri l-VI and caudal appendage is presented in table 6. The specimens dissected had approximately fifty eggs each (from station 197).

Table 6. - Number of articles of cirri I-VI, and caudal appendage of Metaverruca irisulcata (Gruvell, $\operatorname{stn} 197$ I-VI, cirfi I to VI ; CA, caudal appendage; RC, righi ciri; LC، left cirri.

	I	II	III	IV	V	VI	CA
RC	$11 / 15$	$8 / 12$	$16 / 19$	$21 / 23$	$23 / 25$	$25 / 26$	7
LC	$15 / 12$	$8 / 12$	$16 / 19$	$12+/ 23$	$24 / 24$	$24 / 26$	7

Remarks

M. trisulcata was described by Gruvel (1900b, 1902a, 1920) from the Azores, and it was later
recorded from the coast of Morocco (Gruvel 1912b). Foster \& Buckeridge (1995a, b) recorded it from off the Straits of Gibraltar and La Réunion (Indian Ocean). These authors considered Verrica imbricata Gruvel, 1900h, V. striata Gruvel, 1900h and V. radiata Gruvel, 1901 as synonyms of M. trisulcata. Herein I only consider V. striata synonymous of V. trisulcata, included in the Metaverruca. Vertuca imbricara and V. radiata are considered valid and included in Newonanivernted n.g.
The specimens examined are in accordance with the detailed description of the external characters presented by Gruvel (1902a); except the width of the second and third ridges of the tergum are equal, instead of the second being wider. The ornamentation of the rostrum and carina, the ridges of tergum and scutum, and the apex of scutum, serve as a diagnostic of this species.
Gruvel (1900b, 1902a) did nor describe the appendages of V. trisuletut, which are described herein, but he described the appendages of V. striata (Gruvel, 1902c), which is here considered synonymous. The description of the appendages of V striata concord with those I observed, except that of the caudal appendage, Gruvel (1902c) observed nine articles that were longer than coxopodite of cirrus VI, instead of seven articles that are one half the length of the coxopodite. Verruca striata also differs from V. tristulcatd: scutum with apex not curved, with three articular tidges similar in width, and the apices of the carina and rostrum not projecting. Notwithstanding these differences. I agree with Foster \& Buckeridge (1995a, h) and consider this species synonymous with V. trisulcata.
On the other hand, I do not consider V. imbricata and V. radiath as synonyms of M. trisulcata, due to several differences in the number and form of the ridges of the scutum and tergum, and on the number and development of the radial ridges of the shell. Foster \& Buckeridge $(1995 a, b)$ stated that the number of ridges between the tergum and the scutum increased with growth, from one to fout in specimens of about 6 mm in rostrocarinal length. The three specimens I studied had a lengrh between 0.44 and 0.52 mm and all had a constant number of ridges, as in Gruvel's type. In the specimens from

FIG. 14. - Metaverruca trisulcata (Gruvel). A, detail of labrum and palp; B, mandible; C, maxilla I; D, cirrus I; E, cirrus II, only setae of distal articles shown; F, caudal appendage. Scale bars: A-C, F, $0.1 \mathrm{~mm} ; \mathrm{D}, \mathrm{E}, 0.3 \mathrm{~mm}$.

La Réunion (Foster \& Buckeridge 1995b), besides the variable number of ridges, the specimens exhibit a plasticity in the form of the shell from low splayed to quite upstanding. Cirri I and II have the anterior ramus one half the length of the posterior one and the caudal appendage with 0.66 or 0.5 (sic) the length of cirrus VI. For the specimens from the Straits of Gibraltar, Foster \& Buckeridge (1995a) repeated the same description as that fot the La Réunion samples, only adding new figures. Therefore, the differences observed in the shell and appendages of both samples appears to be yet another species, or possibly more than one species due to the high variability desctibed.
The distribution of M. trisulcata is restricted to the Azores region and off Morocco (Fig. 9).

Genus Costatoverruca n.g. ${ }^{1}$

Costatoverruca cornuta (Aurivillius, 1898)
Verruca cornuta Aurivillius, 1898: 197. - Gruvel 1905: 174; 1912a: 5; 1920: 39, pl. 2, figs 12-13, pl. 3, figs 9-10. - Hoek 1907b: 9. - Belloc 1959: 4.

Materlal examined. - Stn 62, 1 specinen, re: 0.5 cm , MNHN Ci 2662. - 5 tn 148.13 specimens and 1 empry shell, гс: $0.4-0.7 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2577$. MNRJ 8911. - $\operatorname{Sin} 150.2$ specimens, re: 0.4 cm , MNHN Ci $2579,-\operatorname{Sen} 151,3$ specimens, 1 : $0.4-0.5 \mathrm{~cm}, \mathrm{MNHNCi} 2670$. - Stu 157. 5 specimens, tc: 0.5, MNHN Ci 2582 . - Sta 159, 1 specimen, re: 0.4 cm, MNHN Ci 2586. - Stn 161, 25 specimens, re: $0.2-0.4 \mathrm{~cm}_{3}$ MNHN Ci 2587, MNRJ 8912. - $\operatorname{Sin} 181,8$ specimens, re: $0.3-0.6 \mathrm{~cm}$. MNHN Ci 2601. - $\operatorname{Sin} 199,6$ specimens, rc: 0.5 cm , MNHN Ci 2612. MNRJ 8913. Stn 237. 2 specimens, rc: 0.4 cm , MNHN Ci 2630. - $\operatorname{Stn} 239,646-628 \mathrm{~m}, 1$ specimen, re: $0.4 \mathrm{~cm}, \mathrm{MNHN} \mathrm{Ci} 2633$.

Remarks

The external shell characters C. cornuta were described by Aurivillius (1898), and later in greater detail by Gruvel (1920), both of which are based on samples from the Azores. Young (in press)

[^0]redescribes this species, including a description of the appendages, based on new samples from the Azores.
All of the specimens studied were collected in the Azores and at a depth previously recorded, 450 to 1229 m .

Genus Verruca Schumacher, 1817
Verruca stroemia (Müller, 1776)
(Figs 15-17)
Lepas strömia Müller, 1776: 251.
Verruca strömia - Darwin 1854: 518, pl. 21, fig. 1a-f. - Pilsbry 1916: 24.
Verpuca stroemia - Nilsson-Cantell 1978: 48, tigs 23-24.

Maferial examined. - Sin 14, 2 specimens on Dendrophyllia cornigera, MNHN Ci 2554. Stn 259, 720 specimens, MNHN Ci 2653 , MNRJ 8914.

Description

Shell (Fig. 15A) white or translucent, flattened, usually with rostrum prominent, cuticle not persistent, ornamented with several longitudinal ridges, sometimes nodose, and irregular growth lines; ridges at suture between rostrum and carina and between rostrum and fixed-scutum conspicuous and projecting. Opercular plates (Fig. 15A) parallel with basis, reduced in size, less than one half rostrocatinal diameter. Surface of opercular plates and shell permeated by several tows of tubes in small specimens, tubes parallel to growth lines sealed in larger ones. Basal margin of wall not inflected.
Fixed-tergum (Fig. 15A) same size as fixedscutum, marginal apex thickened, recurved outward, alate projections to carina, nearly straight sutures to fixed-scutm.
Fixed-scutum (Fig. 15A) nearly quadrangular, upper surface turned toward rostral margin of free scurum; surure with fixed-tergum simple and nearly straight; rostrum having conspicuous ridges; apex marginal, not recurved. Internally, with well developed myophore parallel to hasis.
Carina (Fig. 15A) smaller than rostrum, surface with longitudinal ridges knobbed; well developed
ridge area at suture with rostrum, forming deep grooves between ridges, with five interlocking teeth, ridges decreasing slightly in size from apex to basis; with radius-like projection to fixedtergum.
Rostrum (Fig. I5A) with well developed ridged area at suture with carina, forming deep grooves between ridges, with four to five interlocking rceth, ridges decreasing in size from apex to basis; suture with fixed-scutum also with conspicuous ridges.
Opercular plates with conspicuous and projecting growth lines. Tergum (Fig. 15A, B) larger than scutum, nearly quadrangular, with three articular ridges; axial ridge high, conspicuous an

Fig. 15. - Verruca stroemia (Mülier). A, top view; B, C, tergum and scutum, internal view. Scale bars: 1 mm .
both sides, about same width as second; ridges absent at carinal area. Internally, surface flat, with some visible sealed tubes, scutal margin with deep medial norch, forming articular ridge at upper margin.
Scutum (Fig. 15A, C) with three low articular ridges, axial ridge low and thin, sloping continuously to rostral arca; first ridge wider than second; rostral area, slightly medially depressed, ridges absent; width of plate about one third its height. Internally, surface with some sealed tubes and conspicuous upper depression, which includes the adductor muscle pit, tergal margin sinuous.
Labrum with row of simple, sharp teeth. Palp (Fig. 16A) acuminate, simple setae at upper margin. Mandible (Fig. 16B) with three reeth, second and third with subsidiary cusps, denticles on lower angle. Maxilla I (Fig. 16C) with lower anterior border projecting anteriorly; upper border with two large spines, followed by nineteen to twenty moderate and small spines at lower border. Maxilla II (Fig. 16D) bilobed, numerous simple setae along its margins.
Cirrus 1 (Fig. 1GE) with unequal rami, anterior ramus two third length of posterior, both rami with protuberant articles covered by numcrous simple setae. Cirrus II (Fig, 16F) with unequal rami, anterior ramus about one quarter length of posterior, both rami covered by numerous simple setae; distal articles of anterior ramus with bipectinate setae. Cirrus III (Fig. 16G) with uncqual rami; anterior ramus about one third length of posterior; both rami covered by numerous simple setae, distal articles of anterior ramus with bipectinate setae. Cirri IV to VI with equal rami; intermediate articles (Fig. 16H) with four pairs of setae on anterior margin, one or two setac on posterior angle; width about one half length. Caudal appendage (Fig. 16I) nultiarticulated, sixteen articles, three times length of coxopodite of cirrus Vl ; articles covered by numerous simple setae at distal margins; basal articles with multifid scalcs. Number of articles cirri I-VI and caudal appendage is presented in table 7.

Remarks

Verruca stroemia is a common temperate and polar species from the Northeastern Atlantic,

Fig. 16. - Verruca stroemia (Müller). A, palp; B, mandible; C, maxilla I; D, maxilla II; E, cirrus I; F, cirrus II; G, cirrus III; H, intermediate article of cirrus VI ; I , caudal appendage. Scale bars: $\mathrm{A}-\mathrm{D}, \mathrm{H}, 0.1 \mathrm{~mm} ; \mathrm{E}-\mathrm{G}, \mathrm{I}, 0.2 \mathrm{~mm}$.

TAELE 7. - Number of articles of cirri I-VI, and caudal appendage of Verruca stroemia (Müller), stn 14. I-VI, cirri I to VI; CA, caudal appendage: RC, right cirri; LC, left cirri.

	I	II	III	IV	V	VI	CA
RC	$9 / 9$	$6 / 15$	$7 / 15$	$17 / 21$	$21 / 22$	$23 / 25$	16
LC	$9 / 8$	$6 / 16$	$8 / 18$	$18 / 19$	$21 / 22$	$24 / 26$	16

where it occurs from the intertidal zone to 548 m , with doubtful records from 960-998 and 2600 m . The latter record was from the Azores region, which is the most southern tecord for this species (Gruvel 1902a, 1920).
In several samplings by the Meteor (Young in press) and the Jean Charcot expeditions in the Azores, not a single specimen of V. stroemia has been collected. However, V. spergleri, a species similar to V stroemia, is common in this region, but it does not accur at the depths cited by Gruvel. It appears that the Grovel (1902a, 1920) records represent other verrucids species.
The specimens of V. stroemia studied herein were collected off Portugal, which is accepred here as the southern limit of its distribution.
Verruca stroemia has been recotded from the Spitsbergen, Greenland, Iceland, the Faeroe Islands, Great Britain, and the Norwegian to Portugal coasts (Nilsson-Cantell 1978), with scattered records along the European coast of the Mediterranean Sea, from France to the Adriaric Sea (Fischer 1871; Kolosváry 1947, 1951; Relini 1969). There is also one doubtful record from the Red Sea (Darwin 1854; Fig. 17). Due to the superficial similarity between V stroemia and V. spenglevi all records from the Mediterranean need to be revicwed (see remarks under V. sperngleri).

Verruca spengleri Darwin, 1854
(Figs 17-19)
Verruca spengleri Darwin, 1854: 521, pl. 21, fig. 2. - Wêlner 1897: 274. - Hoek 1883: 133. - Gruvel 1905: 182, fig. 200; 1920: 48. - Hoek 1907b: 9. - Pilsbry 1916: 40. - Baker 1967: 47. - Buckeridge 1994: 90.

Verruca stroemia - Ruggieri 1953: 46 (not V. stroemia Müller).
? Verruca spengleri - Tarasov \& Zevina 1957: 151, figs 49-50. - Zevina 1963: 73. - Ruggieri 1977: 71k, figs 3-5.

Material examined. - Stn L8, 1 specimen, MNIIN Ci 2541، - Sm P3. 42 specimens, MNHN Ci 2507. - Sin P4, 46 specimens, MNHN Ci 2509. - Stn P6. 218 specimens, MNHN Ci 2511. - Sen P7, more than 100 specimens, MNHN Ci 2513, MNR1 8915. - Sin [P8, more than 100 specimens, MNHN Ci 2516, MNRJ 8916. - Sun P9, 30 specimens. MNHN Ci 2518. Sm P12, 86 specimens, MNHN Ci 2521. Stn PI3, 1 specimen, MNHN Ci 2522. - SmP17, 4 specimens, MNHN Ci 2658. - Sm P19, 110 specimens, MNHN Ci 2525. - Sin P23, 68 specimens, MNHN Ci 2526. - Stn P24, 98 specimens, MNHN Ci 2527. - Sen P27, 280 specimens, MNHN Ci 2528, MNRJ 8917. - Stn 1229, 298 specimens, MNHN Ci 2529. MNRJ 8918. - Sm P30, 1 specimen, MNHN Ci 2660. - Sun P33. 86 specimens, MNHN Ci 2532 . - Stn 1, 52 specimens, MNHN Ci 2547. - Stn 61, 69 specimens, MNHN Ci 2558. - Stu 142, 22 specimens, MNHN Ci 2572. - Stu 143. I specimen, MNHN Ci 2573. - Stn 216, 62 specimens, MNHN Ci 2619. - Stn 224, 16 specimens, MNHN Ci 2623.

Description

Shell (Fig. 17A) white or translucent; curicle not persistent; flattened; usually with rostrum more prominent, ornamented only with irregular growth lines; ridges at suture between rostrum and carina conspicuous and projecting. Opercular plates (Fig. 17B) parallel to basis, reduced in size, less than one half rostrocarinal diameter. Surface of opercular plates (Fig. 17A-D) and shell permeated by several persistent rows of rubes, parallel ro growth lines. Basal margin of wall not inflected.
Fixed-tergum (Fig. 17A) smaller than fixedscurum, marginal apex thickened, recurved outward; alate projections absent, sutures essentially straight ot with small ridge at carinal suture.
Fixed-scutum (Fig. 17A) nearly quadrangular, upper surface turned toward rostral margin of scutum; surure areas simple and nearly straight, small ro large ridge ar suture of rostrum; apex marginal, not recurved outward. Internally, with well developed myophore parallel to the basis.
Carina (Fig. 17A) smaller than rostrum, well developed ridge area at suture with rostrum

Fig. 17. - Verruca spengleri Darwin. A, top view; B, carino-rostral view; C, D, tergum and scutum, internal view. Scale bars: 1 mm .

FiG. 18. - Verruca spengleri Darwin. A, labrum and palp; B, mandible; C, maxilla I; D, maxilla II; E, cirrus I; F, cirrus II; G, distal article of anterior ramus of cirrus $\mathrm{II} ; \mathrm{H}$, cirrus $\mathrm{III} ; \mathrm{I}$, intermediate article of cirrus VI ; \mathbf{J}, caudal appendage and penis; K , basal articles of caudal appendage. Scale bars A-D, G, I, K, $0.1 \mathrm{~mm} ; \mathrm{E}, \mathrm{F}, \mathrm{H}, \mathrm{J}, 1.0 \mathrm{~mm}$.
forming deep grooves berween ridges, five ro seven interlocking teeth, ridges decreasing slightly in size from apex ro basis; suture with fixed-tergum wirh low ridges.
Rostrum (Fig. 17A) with well developed ridged area ar suture wilh carina, forming deep grooves between ridges, four to six interlocking teeth, ridges decreasing slightly in size from apex to basis; suture widh fixed-scurum nearly smooth or depressed for fixed-scutum worh.
Opercular plates with growth lines conspicuous, but not projecting. Tergum (Fig. 17C) larger than scutum, ncarly quadrangular, threc articular ridges: axial tidge elevated, conspicuous at both sides, as wide as second, distance berween ridges equal, groove between first and second larycr than that between sccond and third; without ridges at carinal area. Imrernally, surface flat, some sealed tubes visible, scutal margin sinuous, Scutum (Fig. 17D) with three low articular ridges, axial ridge low, thin, sloping continuously ro rostral area; first and second ridges equal in width or latter wider, no ridges at rostral area; greater width of plate about one half scutum height. Internally, surfacc with some sealed tubes visible, adductor ridge conspicuous; tergal margin sintous.
Labrum (Fig. 18N) with tow of twenty-four simple, sharp teeth. Palp (Fig. 18A) acuminate, simple setac at upper margin. Mandible (Fig. 18B) with three teeth, second and third usually with subsidiary cusps at upper margin, low denticles on lowet angle. Maxilla I (Fig. 18C) with lower anterior border projecting anteriurly; upper border with rwo or three large spines, followed by fifteen to rwenty-four intermediate to small spines at lower border. Maxilla II (Fig. 18D) bilobed, with numerous simple setae along its margins,
Cirrus I (Fig. 18E) with unequal rami, anterior ramus one half length of posterior, anrerior ramus with proruberant articles, covered by numerous simuple setac, posterior ramus with slightly protuberant articles.
Cirrus II (Fig. 18F) with unequal rami, anterior ramus about one third length of posterior, both rami covered by numerous simple setae, distal articles of anterior ramus with bipecrinate serae (Fig. 18G).
Cirrus III (Fig. 18H) with unequal rami, anterior
ramus about one half length of posterior, borh rami covered by numerous simple serae, distal articles of anterior ramus with bipectinate setae. Cirri IV to VI with equal rami; intermediate articles (Fig. 18I) with four pairs of setae on anterior margin, one or two setae on posterior angle, small spinules on distal margin, length about one half width. Caudal appendage (Fig. 18J) multiarticulated, with fourteen articles, two and one half times length of coxopodite of cirrus VI ; articles covered by numerous simple serae at distal margins; basal articles (Fig. 18K) with spinules and multifid scales.
Number of articles of cirri I-VI and caudal appendage is presented in table 8.

Table 8. - Number of articles of cirri I-VI, and caudal appendage of Verruca spengleri Darwin, stn P6. I-VI, cirri I to VI; CA, caudal appendage; RC, right cirri; LC. left cirri; 4. broken ramus.

	I	II	III	IV	V	VI	CA
RC	$8 / 11$	$6 / 13$	$7 / 15$	$17 / 18$	$16+/ 21+$	$23+/ 22+$	+
LC	$8 / 11$	$6 / 14$	$8 / 15$	$18 / 18$	$20 / 21$	$23 / 22$	14

Remarks

Darwin (1854) described and figured specimens of V. spengleri, bur he only illustrated the internal view of the scutum. This species is similar to V stroemia, but the well developed adductor tidge of the movable scutum in V. spengleri readily scparates these species. Otherwise, both species can be distinguished by V. spengleri having a relatively narrower scutum, the first and second ridges being of equal width, the shell being permeated by tubes, and lacking longitudinal ridges. Verruca spengleri was first described from Madeira Island (Darwin, 1854) and later, from the Azores (Gruvel 1920; Baker 1967) and Black Sea (Tarasov \&: Zevina 1957). Darwin (1854) noted that "from geographical considerations" V. spengleri probably was the species found in the Mediterranean. Ruggieti (1977) cited this species in Southern Italy, and also noted that probably all of the citations of Veryyca from the Mediterranean Sea were actually V. spengleri. Ruggieri (1977) did not describe his specimens, bur his
figures 3 and 4 show the scutum with a developed adductor ridge, a thin first external ridge, and a width/heighe ratio of one half, which agrees with the description of V. spengleri.
Tarasov \& Zevina (1957) cited V. sperugleri as common in the Black Sca, between 20 and 50 m . The specimens described are similar to those I observed, but the scutum is relarively larger and the axial ridge is placed in the middle of the basal margin (Tarasov \& Zovina 1957, fig. 49). In addition, the caudal appendage has only nine articles. There-
fore, I consider the identification of the Black Sea specimens of V. spengleri as dubious, and in need of further confirmation. Due to the large differences between the specimens from the AzoresMadeira Archipelagos and the Black Sea, I suspect that the Mediterranean specimens may well be an undescribed species.
Verruct spengleri is common in the Madeira and Azores Archipelagos, from between the intertidal zone and 103 m . Gruvel (1920) also recorded it from 130 to 440 m (Fig. 19).

Fig. 19. - Geographic distribution of Verruca stroemia (Müller) (dotted) and Verruca spengleri Darwin (hatched).

Suborder BALANOMORPHA Pilsbry, 1916
Family Chthamalidae Darwin, 1854
Genus Chthamalus Ranzani, 1817
Chihamalus stellatus (Poli, 1791)
Lepas stellatus Poli, 1791: 29, pl. 5, figs 18-20.
Chthamalus stellatus - Darwin 1854: 45, pl. 18, figs la, c, e-f, h (part). - Southward 1976: 1009, textfigs $1-2,6$, pl. I, figs c-d, f-g, pl. 2, figs a-b, d (synonymy).
Chthamalus stellatus stellatus - Pilsbry 1916: 302, pl. 71, figs 1-4a. - Nilsson-Cantell 1921: 281.

Material exabined. - Stm L5. 96 specimens, MNHN Ci 2537, MNRJ 8919. - Stn L11, 3 specimens, MNHN Ci 2657.

Diagnosis and description. - See Southward 1976: 1009.

Remarks

The present specimens conform to the description of the shell and appendages formulated by Southward (1976). Chthamalus slellatus is widely distributed from the notchern Scottish coast and English Channel, to the Mediterranean Sea, to the tropical coast of West Africa, Mauritania and with some doubtful recotds south of the Cameroons (Stubbings 1967; Sourhward 1976). It was also recorded from Madeira, Cape Verde and Azores Islands (Darwin 1854; Stubbings 1964; Baker 1967). It is abundant between the Low Water Mark and the splash zone on all rocky shores of the Sao Jorge Island (Baker 1967). The Jean Charoot Expedition collected this species at Santa Maria and Faial Island; thus it has a wide distribution within the Azores Archipelago.

Family Bathylasmatidat Newman et Ross, 1971
Genus Bathylasma Newman et Ross, 1971
Bathylasma birsutum (Hock, 1883)
Balanus hirsutus Hock, 1883: 158, pl. 13, figs 8-15.
Bathylasma Jirsutum - Newman \& Ross 1971: 149, textfig. 73, pl. 23-24 (synonymy).

Material examined. - Stn 6, eroded shell fragments, MNHN Ci 2551 . - Stn 46, 9 pieces of ero-
ded and disarticulared plates of the shefl. MNHN Ci 2556. - Sm 180, 1 scutum, MNHN Ci 2667. Sin 240. 1 croded carina, MNHN Ci 2668. Stn 255. 13 specimens fragménted, rc: $1.4-2.4 \mathrm{~cm}$, MNHN Ci 2651 , MNRI $8920 .-\operatorname{Snn} 260.3$ specimens, rc: $1.5-2.8 \mathrm{~cm}$, MNHN Ci 2655.

REMARKS

Bathylasma hirsutum appears to be one of the most common Northern Hemisphere deep-sea balanomorply barnacles. It has been recorded several times in the Northeast Atlantic, from the Faeroe Islands to the Azores, from depuhs of 944 to 1829 m (Hock 1883, 1913 : Pilsbry 1916; Gruvel 1920; Southward \& Southward 1958; Utinomi 1965; Newnan \& Ross 1971). The ptesent samples are from 570 to 940 m , and occur on tocks and on cchinoid spines. Bathylasma hirsutum was redescribed in detail by Newman \& Ross (1971).

Genus Hexelasma Hoek, 1913

Hexelasma americanum Pilsbry, 1916
(Figs 1, 20-21)
Hexelasma americanum Pilsbry, 1916: 330, pl. 69. - Utinomi 1965: 12.
Aaptolasma americanum - Newman \& Ross 1971: 161, pl. 22a-b, 36-37; 1976: 46.

MATHRIA. Examined. - Sen 180, 1 specimen, with the shell plates disarticulated (lacking one latera), MNHN Ci 2599.

DESCRIPTION

Shell conic, color white or pale orange, aperture toothed. Plates (Fig. 20A, B) with spaced and conspicuous growth lines; curicle persistent only on opercular plates, in larger specimens, pilose along growth lines; alae well developed, with fine lines, radii absent; basal margin of wall sometimes undulated. Sheath (Fig. 20B) adpressed, wall defined. Internally (Fig. 20B) lamina with thin longitudinal striae; spaces between striae covered by chitin in larger specimens. Carino-lateral narrow, 0.13 width of carina and 0.22 width of lateral.

Scutum (Fig. 20C) higher than wide, height 1.4 to width; apex recurved outwards, tergal scgment narrow, with wide and strong longitudinal

Fig. 20. - Hexelasma americanum Pilsbry. A, lateral view of carina and carino-lateral; B, tateral, internal view; C, D, scutum, external and internal view; E, F, tergum, external and internal view. Scale bars: A, B, 0.3 mm; C-F, 0.2 mm .

Fig. 21. - Hexelasma americanum Pilsbry. A, labrum and palp; B, palp; C, detail of the palp setae; D, mandible; E, maxilla I; F, maxilla II; G, cirrus I; H, cirrus II; I, intermediate article of cirrus VI; J, penis. Scale bars: A, B, D-J, $0.5 \mathrm{~mm} ; \mathrm{C}, 0.02 \mathrm{~mm}$.
apico-basal rib near occludene margin; articular margin straight, basal margin sinuous; occludent margin straight; growth lines conspicuous and elevated. Internally (Fig. 20D), adductor ridge absent, articular ridge rounded, medial to articular margin; forming shallow articular furrow; six lateral depressor muscle crests poorly developed; articular and oceludent margins thickened, leaving depressed triangular area medially.
Tergum (Fig. 20E, F) triangulat, with spur near basi-scutal angle, spur furrow open; spur distally rounded, curving continuously to basal margin; eight crests for depressor muscles, projecting; articular ridge elevared, not curved.
Labrum (Fig. 21A) hirsute, lacking teeth, with shallow medial concavity. Palp (Fig. 21B, C) club-shaped, large, with numerous fine pectinate setae. Mandible (Fig. 21D) with four teeth, distance between first and second twice that between second and third, second to fourth with subsidiary cusps, lower angle obtuse. Maxilla I (Fig. 21E) with two large spines followed by conspicuous, large norch, twelve to thirteen moderate and eight to nine small spines along curting edge. Maxilla II (Fig. 21F) triangular, with long simple setac.
Cirrus I (Fig. 21G) with subequal rami, anterior ramus slightly longer than postérior; both with protuberant articles covered by long simple setae, distally with fine pinnate setac. Cirrus II (Fig. 21 H) with equal rami, articles protuberant, with clusters of simple setae on protuberance and distal angle, distal articles with fine pinnate setae. Cirri III-VI with equal rami. Intermediate atricle of cirrus Vl (Fig. 211) with length 0.60 width, with two pairs of long, fine, pinnate setac on anterior margin, small setulac below these pairs; one or two short simple setae on posterior angle, small scales on posterior margin. Penis (Fig. 21J) short, annulated, setuale on distal portion. Number of articles of cirri I-VI is presented in table 9.

Remarks

Foster (1981) considered Aaptolasma Newman \& Ross synonymous with Hexelasma Hoek and proposed an emended diagnosis. His diagnosis stated that the scutum and tergum have no articular ridge, but a tergal ridge is present on the

Table 9. - Number of articles of cirri I-VI of Hexelasma americanum Pilsbry, stn 180 . I-VI, cirri I to VI; RC, right cirri; LC, left cirri.

	I	II	III	IV	V	VI
RC	$12 / 11$	$15 / 20$	$29 / 29$	$43 / 44$	$47 / 49$	$46 / 49$
LC	$13 / 13$	$13 / 24$	$16+/ 33$	$37 / 41$	$48 / 42$	$46 / 50$

tergum of H. americanum. Therefore, Foster's diagnosis has to be emended to include the tergal articular ridge as absent or present.
Hexelasma americanum is the only species of this genus secorded from the Atlantic. It was collected off Sourh Carolina, Blake Plateau, between 512 and 770 m (Pilsbry 1916; Newman \& Ross 1971).

The specimen dredged by the Jean Charcot Expedition is similar to that described by Pilsbry (1916) and Newman \& Ross (1971) except for rhe following characters: The shell has a pilose curicle, the spur of the tergum is distally rounded, the mandible has an obtuse angle and the penis has serulae at the distal portion. These characters may be individual variations due the very few number of specimens described. Pilsbry (1916) described only one complete and three incomplete specimens, and herein I add another specimen. All of the other characters of the shell, opercular plates and cirri agree with the descriptions by Pilsbry (1916) and Newman \& Ross (1971). including the details on the growth lines of the plates described by the latter.
The record of this species from the Azores greatly expands the distribution of Hexelasma americanum (Fig. 1). The depth range of this species is extended from 770 to $1235-1069 \mathrm{~m}$.

Family Tetraclitidae Gruvel, 1903
Genus Tesseropora Pilsbry, 1916
Tesseropora arnoldin.sp.
(Figs 22-23)
? Tetraclita squamosa var. elegans - Baker 1967: 46 (not T. squamosa elegans Darwin,1854).

Materlal examined. - Holotype: stn P9, 1 broken specimen, rc: $0.7 \mathrm{~mm}, \mathrm{MNHN}$ Ci 2520.
Paratypes: stn L9, 1 broken specimen, MNHN

Ci 2544. - Sm L11, 6 specimens, re: 0.2-0.4 cm, MNHN Ci 2545 , USNM 282803, MNRJ 8921. Stn P29, 15 specimens, re: $1.0-4.0 \mathrm{~mm}, \mathrm{MNHN}$ Ci 2531, MNR] 8922. - Stn 216, 5 empty shells, $0.3-0.5 \mathrm{~mm}, \mathrm{MNHN} \mathrm{Ci} 2621$.

Etymology. - Named in honor of Dr Arnold Ross, in appreciarion of his contributions to our knowledge of the Tetraclitoidea.

Diagnosis

Shell and sheath white; radii incomplete; rubes irregular, radially lengthened, with striae on inner side of outer lamina. Scurum higher than wide, adductor ridge separated from articular ridge. Labrum hairy; three or four conspicuous teeth on each side of medial notch. Intermediate article of cirrus VI with four pairs of setae on anterior margin.

Description

Shell (Fig. 22A, B) conic, white, aperture smooth or little toothed, cuticle usually persistent, when present finely pilose. llates with uniformly thin ribs, growth lines thin; alae developed, smooth; radii incomplete, besr developed in lateral plate. Sheath (Fig. 22C) adpressed, well defined. Inner lamina with thin longitudinal striae in small specimens to well developed striated ribs over septa in larger ones. Tubes irregular, radially lenghtened, with striae on inner side of outer lamina. Base calcareous, thin.
Scutum (Fig. 22D) higher than wide, straight, growth lines conspícuous; articular and basal margins convex, oceludent margin straight and toothed. Internally, adductor ridge thin, well developed, apical portion separated from articular ridge; articular ridge long, almose length of articular margin, articular groove shallow; rostral and lateral muscle depressor pits conspicuous, shallow, five rostral and lateral depressor crests, adductor muscle pit small, rounded, supramedial.
Tergum (Fig. 22E) elongated, with spur near basi-scutal angle, distal end rounded, curving continuously to basal margin; longitudinal furrow open and broad; six crests for depressor muscles prominent: arricular ridge slightly prominent in upper portion.
Labrum (Fig. 23A) hairy; three or four conspicuous teeth on each side of shallow medial
notch. Palp (Fig. 23B) club-shaped, large, with numerous fine pectinate setae on upper margin. Mandible (Fig. 23C) with five teeth, second to fourth with conspicuous subsidiary cusps, especially fourth; strongly denticulated between fourth and fifth and at lower angle. Maxilla I (Fig. 23D) with one or two large spines followed by a conspicuous norch, seven to nine moderate and five to seven small spines along cutting border; in norch small spines seldom present. Maxilla II (Fig. 23E) bitobed with long simple setae.
Cirrus 1 (Fig. 23F) with subequal rami, anterior twice length of postetior; posterior one with protuberant arricles: articles of both rami covered by several long, simple, fine, pinnare setac. Cirrus II (Fig. 23G) with equal rami, articles protuberant, clothed with simple, fine pinnate setae; protopodite with plumose setae. Cirrus III (Fig. 23H) with anterior ramus 1.35 length of posterior, articles with numerous bipectinate setae, few simple and pinnate setae and multifid scales near setac (Fig. 23I-K); protopodite with plumose setae (Fig. 23L). Cirri IV-VI with rami of equal length. Intermediate atricle of cirrus VI (Fig. 23M) equidimensional, four pairs of setae on anterior margin, one to four simple setae on postctior angle. Penis short, annulated, with few setuale. Number of articles of cirri I-VI is presented in table 10.

Table 10. - Number of arlicles of cirri I-VI of Tesseropora arnoidi n.sp. (Holotype). I-VI, cirri I to VI; RC, right cirri; LC, left cirri.

	I	II	III	IV	V	VI
RC	$9 / 6$	$6 / 6$	$10 / 8$	$16 / 15$	$13 / 15$	$16 / 17$
LC	$9 / 5$	$6 / 6$	$10 / 7$	$16 / 16$	$13 / 14$	$16 / 16$

Remarks

Tesseropora atlantica was previously the only species of this genus recorded from the Atlantic Ocean, having been reported from Bermada and the Azores (Newman \& Ross 1977) and on Saint Paul Rocks (Edwards \& Lubbock 1983a, b). The description of Newrnan \& Ross (1977) appears to be based exclusively on the Bermuda specimens, including all of their figures. But, in their

Fig. 22. - Tesseropora arnoldi n.sp. A, B, paratype (stn 216); A, top view; B, lateral view; C, D, holotype, C, lateral, internal view; D, E, scutum and tergum, internal view. Scale bars: 1 mm .

Fig. 23. - Tesseropora arnoldi n.sp. A, labrum and palp; B, palp; C, mandible; D, maxilla I; E, maxilla II; F, cirrus I; G, cirrus II; \mathbf{H}, cirrus III; I-K, detail of articles of anterior ramus of cirrus III; \mathbf{L}, detail of article of protopod of ramus III; \mathbf{M}, intermediate article of cirrus VI. Scale bars: A-E, I-M, $0.05 \mathrm{~mm} ; \mathrm{F} \cdot \mathrm{H}, 0.1 \mathrm{~mm}$.
material examined, they cite the specimens studied by Baker (1967) from the Azores.
The samples from the Jean Charcot Expedition show that the species of Tesseropora from the Azores is conspicuously distinct from that described from Bermuda. The inner lamina of the plates have ribs well developed continuously from the base to the sheath, intercalated by numerous fine ribs, instead of only small numerous fine ribs. The adductor ridge of the scutum is removed from the articular ridge, whereas T. atlantioa has the adductor ridge continuous with the arricular ridge. The labrum has conspicuous teeth on the crest, contrary to the lack of teeth in T. atlantica. The articles of cirrus III have multifid scales and no curved spines or denticles on the anterior margin. 'lhe intermediate articles of cirrus VI have only four pairs of paired setae, instead of five pairs as in T. atlantica.
The specimens examined are smaller than those observed by Newman \& Ross (1977); most are about 5 mm in carino-rostral diameter and only one specimen is 7 mm ,
Tesseropona amoldi $n, s p$, can be distinguished from Pacific Jesseropara [T, rosea (Krauss) and T. wiveni (Nillson-Cantell)], by the color of the sheath, the development of the radii and the parietal tubes and the structure of the cirri. Tesseropora rosea has the sheath dirty white tinted pink; the radii are moderately wide, and the intermediate articles of cirrus VI have three pairs of setae and numerous short setac in dense bunches below the two major pairs (Newman \&e Ross 1977). 7. wiveni has the sheath usually pink; the parietal tubes are divided into secondary and tertiary rows basally, and the intermediate articles of cirrus VI have three pairs of setae and a few short setae in dense bunches below the two major pairs (Newman \& Ross 1977).
'lesseropora armuldi $\mathrm{n} . \mathrm{sp}$. was collected intertidally to about 25 m depth, usually attached to Megabalanus azoricus and molluse shells. Several samples were raken in the Azores in intertidal and shallow waters, but the species was not common in these samples. It was collected only on Faial and Sáo Miguel Islands. All the dissected specimens were incubating nauplii. Baker (1967) observed that Tetraclita squamosa var. elegans Darwin (? = T. amoldi $\mathrm{n} . \mathrm{sp}$.) was "very abundant
in a single situation at Urzelina in 1 m . of water" at São Jorge Island.

Family Balanidae Leach, 1817
 Genus Balanus Da Costa, 1778

Balanus trigonus Darwin, 1854

Balanus trigonus Darwin, 1854: 223, pl.3, fig. 7a-f. - Pilsbry 1916: 111, pl. 26, figs 1-13e (synonymy). - Baker 1967: 47.

Material examined. - Stn L8, I specimen, MNHN Ci 2542. - Stn P3, 1 specimen, MNHN Ci 2508. - Stn P4, 1 specimen, MNHN Ci 2510. - 5 m PG, 31 specimens, MNHN Ci 2512. - Sen PT, >170 specimens, MNHN Ci 2514, MNRJ 8923. - Stn P8, shells fragments, MNHN Ci 2517. - Stn P9. 5 empry shells, MNHN Ci 2519 . - Sen P14, 31 specimens, MNHN Ci 2524. - Stn 1P15, 10 specimens, MNHN Ci 2546. - Stn P17, 25 specimens, MNHN Ci 2652. - Sin P29, 2 specimens, MNHN Ci 2530. - Stn P34, 1 specimen, MNHN Ci 2533. - Sin P41. 6 specimens, MNHN Ci 2661. - Stn 1, more than 160 specimens, MNHN Ci 2548. MNRJ 8924. - Stn 10, 5 tmpty sheils. MNIN Ci 2552. - Sin 11, 2 empty shellis, MNHN Ci 2553. - Stn 60, 8 empty shells, MNHN Ci 2557. - Stn 143, more than 100 specimens, MNHN Ci 2574.

Remarks

Balanus trigonus has a world-wide distribution, and is widespread in the Eastern Atlantic, occurring from the Mediterranean African coast to South Africa (Stubbings 1967). It was previously recorded from the Azores by Baker (1967) and Young (in press).

Genus Megabalanus Hoek, 1913

Megabalanus azoricus (Pilsbry, 1916)
Balanus tintinnabulum azoricus Pilsbry, 1916: 62, figs 8, II c, pl. 12, figs 2-2b. - Baker 1967: 46.
Mogabalanus azoricus - Newman \& Ross 1976: 67. - Henry \& Mclaughlin 1986: 21, figs 1a, 3d-e, 6a-d.

Materla! examined. - 5 tn L9, 10 specimens, rc: $0.4-2.7 \mathrm{~cm}$, MNHN Ci 2543, MNRJ 8925. Stn P7, 3 specimens, rc: $1.6-2.8 \mathrm{~cm}, \mathrm{MNHN}$

Ci 2515. - Smn 138, 7 specimens, re: 2.8-3.8 cm. MNHN Ci 2534, MNRI 8926. - Sin P41, 2 specimens, re: $2.9 \mathrm{~cm}, \mathrm{MNHN}$ Ci 2535 . - Stn 186, more than 50 empty shells, re: $0.5-3.5 \mathrm{~cm}$, MNHN Ci 2602. - $\operatorname{Stn} 216,1$ empty shell, rc; $3,1 \mathrm{~cm}$, MNHN Ci 2620.

Remarks

The wall and opercular plates of M. azoricus were redescribed by Henry \& McLaughlin (1986) who reported it from the Azores and Sr. Helena Island. The type localiry of this species is Terceira Island (Pilsbry 1916), but it is also reported from São Jorge Island (Baker 1967). The Jean Chanent sampled this species from the Faial and Sāo Miguel Islands and, also, off Santa Maria 1sland: Therefore, this species appears to be well distributed in the Azores Archipelago, from the intertidal to infralittoral zones. The record from $80-90 \mathrm{~m}$ off Santa Maria Island is based on one empty croded shell, which probably fell down to this depth.

THE GENERIC REVISION OF THE VERRUCIDAE

(Figs 24-25)

Remarks

Pilsbry (1916) proposed four sections to separate the genus Verruca, i.e., Metaverruca, Verruca, Cameraverruca and Altiverruca. He also described four species groups in the Verruca section, viz: group of V. stroemia, V. alba, V. nexa and V. calotheca. All of the characters in this arrangement were based almost wholly on the structure of the shell. He also included some differences on the relative lengths of the rami of cirri I to III.
All of Pilsbrys sections have subsequently been accorded generic status (Zevina 1978), and the following genera Rostrataverruca Broch, 1922, Brochiverruca Levina, 1993b and Spongoverruct Zevina, 1987a have been added to the Verrucidae (Broch 1931; Zevina 1987a, 1993b; Buckeridge 1994). Rostratoverruca encompasses the V. nexa group recountzed by Pilsbry (1916). Young (in press) questions the validity of the genus Metaverruca, since many of its diagnostic characters are present in other genera.

Fig. 24. - Schematic representation of the relative position of the opercular plates and size of the adductor ridge of selected genera of Verrucidae, viewed from rostral side. A, Altiverruca; B, Newtraniverruca п.g.; C, Metavarruca; D, Verrucas.s.

Additionally the presence of a myophore, the most used feature to characterize this genus, is also well developed in V stroemia, the rype species of Vermuers.
Buckeridge (1997) recognized the problem of the myophore as a diagnostic character, but proposed mannaining the genus, and added new characters for the diagnosis. Besides the thickened basal ledge, the well developed myophore, and the top flattened as described by Pilsbry (I916), he added the box-like shape of the shell, and a D-shaped orifice as diagnostic for this genus.
The greatest problem defining the gencra within the Verrucidae is the diagnosis of Vermora s.str. Pilsbry (1916) diagnosed this genus as "Top flattened, the plane of the movable plates not far from parallel with that of the base; sadio-alar area between parieties of fixed scutum and tergum small and linear". Buckeridge (1994) defined this genus as "Verrucids with apices of rostrum and carina marginal; fixed scutum without myophore; operculum parallel to base." The diagnosis of Buckeridge (1994: 90) is in ertor when he cites the absence of a myophore since V. strommid, type species of Verruca, has a well developed myophore, as do several other Verruca species.

With the reassigment of many species of Verruca s.l. to other genera (Metaverruca, Ristratoverruca, Cameraverruat, etc.), the species which remain in Verruca s.s. do not appear to be closely related. In studying the shell characters of several species of Verruca s.s., two transformation series can be observed.
The first transformation series is based on the shape of the shell and the development of the myophore ${ }^{2}$ (Fig. 24). The first stage of development is attained in the specics of Altiverruca. This is characterized by a steep shell with the opercular plates nearly parallel to the fixed scutum and rergum (Fig. 24A). The adductor muscles are attached directly to the inner side of the wall, without the scutum lacking an adductor ridge and also with a poorly developed adductor pit.
If we compare this pattern with an outgroup reference, the lepadomorphs, this character can be considered plesiomorphic in the verrucids. Both scuta of the lepadomorphs are usually parallel, and fail to devclop an adductor ridge.
Considering the steep pattern of Altiverruca as plesiomorphic, an evolutionary trend can be vizualized when the shell becomes more inclined and flatter, which implics a change in the relative position between the movable scurum and fixed-scutum: The angle between these plates enlarges from narrowly acute to a right angle (Fig. 24A, B). The change in position of these plates also necessitates a change in the attachment of the adductor muscle. The development of the adductor ridge ranges from a small low ridge to a proiecting tongue-myophore (e.g. V. stroemid; Fig. 24C, D). The development of an adducror ridge makes it possible to maintain the same area for muscle fixation.
The other transformation series is in the development of the secondary ridges on the rostrum and the carina, directed toward the opercular valves. The supposedly plesiomorphic position of the umbos is marginal (apical), with a linear hinge line berween the movable opercular valves and the rostrum-carina, as can be observed in basal

[^1]

Fig. 25. - Schematic representation of the rostra and carina ridges of selected genera of Verrucidae, viewed from rostro-carinal slde. A, Newmaniverruca n.g.; B, Costatoverruca ח.g.; C, Rostratoverruca; D, Brochiverruca.
pedunculates (Fig. 25A). This stage is seen in several species included in Verruca s.l. (e.g. V. entobapta. V. albatrossiana, V. scrippsae).

The sccondary ridges are first developed on the rostrum, beginning at the umbo and moving up to the scutum basis (Fig. 25B). This state is also secu in some species of Verruca s.I. (V. alba, V. saznthia, V. floridana). The umbo of the rostrum is displaced from the margin (Fig. 25C). The species with this state comprise the genus Rostratoverruca. Subsequently, the umbo of the carina is also displaced from the margin (Fig. 25D), which is representative of the species of Brobbivertua.
Based on these considerations, I propose dividing Verruca into three genera: Newmaniverruca n.g., Costatoverruca n.g. and Verruca s.s. Newmaniverruct n.g. contains the box-like species with the opercular plates nearly parallel to the basis, with tnarginal umbos of rostrum and carina, without any secondary ridges and withour a myophore. Costatoverruia n.g. encompasses the box-like species with the opercular plates nearly parallel to the basis, secondary ridges developed on the rostrum, and rarely with an adductor ridge or myophore. Verruca s.s. contains the derived species with the shell flattened, the opercular
valves parallel, and the myophore strongly developed.
Therefore, Mctaverruca is redefined to include the box-like species with a well developed myophore, without secondary ridges on the fixed rostrum. Also, the adults develop a ledge at the base of the wall.
The genus Spongoverruca was described to isolate V. spongicola, which lives in sponges. Gruvel (1911, 1912b) presented a short description with no diagnostic character thar allows the separation of this species in a new genus, appart from being the only species occurring in sponges. The perpendicular position of the opercular valves in
relation to the basis mandares inclusion of this species in Altiverruca. Although Buckeridge (1994: 89) questioned the validity of this genus, I consider Spongoverruca as a synonym of Altiverruca.
Broch (1931: 45) presenred the name Eu-verruca as a subgenus of Verruca to separate in the following way Verrusea s.str. from the other subgenera he described. He justified this new name due to "The central group of the genus is better marked by fixing the prefix Eu- to the genus name than using the latter alone; this may serve to bring confusion about." Therefore Euverruca is an objective synonym of Verruca.

Key to the genera of the family Verrucidae
1a. Form erect; opercular plates perpendicular to base; withour adductor ridge or myo-
phore on fixed-scutum .. Altiverruca
1b. Form not erect; opercular plates ar no more than 45° to base; with or wirhour
adductor ridge or myophore on fixed-scutum .. 2
2a. Fixed tergum and rostrum medially expanded, forming internal partitioned caviries; opercular plates 45° to base; with adductor ridge on movable scurum

Cameraverruca
2b. Fixed tergum and rostrum not medially expanded, withour internal caviries; opercular plares less than 45° to base: without adductor ridge on movable scutum 3

3a. Shell box-like; opercular plares proportionally large, their width one half or more
the width of shell; with or without myophore

4
3a. Shell flattened; opercular plates proportionally small, their width less than one half the width of shell; with a strong myophore

Verruca
4a. Umbo of rostrum and carina marginal 5
4 b . Umbo of rostrum not marginal, umbo of carina marginal or displaced from margin 6
5a. Rostrum without secondary ridges directed toward tergal base; without myophore; basal margin of shell not thickened Newmaniverruca n.g.
5b. Rostrum with secondary ridges; with or withour myophore; basal margin of shell nor thickened Costatoverruca n.g.
$5 c$. Rostrum without secondary ridges directed toward tergal base; with myophore; basal margin of shell thickened Metaverruca
6a. Umbo of rostrum displaced from margin Rostratoverruca
6 b . Umbo of rostrum and carina displaced from margin Brochiverruca

Genus Altiverruca Pilsbry, 1916

Verruca Section D: Aliverruca Pilsbry, 1916: 40.
Verruca (Altiverruca) - Broch 1931: 45. - Foster 1978: 68.
Altivertuca-Zevina 1987a: 1813. - Buckeridge 1994: 92.

Spongoverruca Zevina, 1987a: 1813.
Type species. - Vermia hoeki Pilsbry, 1907a, by original desjgnation (Pilsbry, 1916: 40), Recent, Anegada Passage, $18^{\circ} 30 \mathrm{~N}-63^{\circ} 31^{\prime} \mathrm{W}, 496$ fathoms.

Species includely - A. gibbosa (Hock, 1883), A. incerta (Hock, 1883), A. nitida (Hock, 1883), A. quadrangularis (Hock, 1883), A. abluqua Hock, 1883, A. sulcatis (Hack: 1883), A. creuata (Aurivillius, 1898), A. costata (Aurivillius, 1898) n. comb. (? = A. gibbasa), A. inermis (Aurivillius, 1898) n. comb., A. crecta (Ginvel, 1900b), A. longicarinata (Gruvel, 1900b), A. cristallina (Gruvel, 1907), A. plana (Gruvel, 1907), A. mitra (Hoek, 1907b) (=A. gibbosa), A. daruini (Pilsbry, 1907a) (=A. gibbosa), A. hoek: (Pilsbry, 1907a) ($=1$. quadrangularis), A. joubini (Gruvel, 1912a), A. cassis (Hoek, 1913) ($=$ A. cristallinat), A, caswla (Hoek, 1913), A, naticulat (Hock, 1913), A. bicomudia (Pilsbry, 1916) (= A. gibbosa), A. rabbuniana Pilsbry $1916(=A$. gibbusnt . A. cristallinat laties (Broch, 1922) $\left\langle=V_{\text {. cristallina) }}\right.$, A. ornara Nilsson-Cintell, 1929 A regulamis Nilsson-Cantell, 1929, A. gibbosa somaliensis (Nilsson-Cantell, 1929) (=A, gibbosa), A. allisoni (Ran et Newman, 1972), A. ates (Kevina, 1975), A. angustiterga Zeviny, 1987a, A. galapagosa 7evina, 1987a, A. gira (Zevina, 1987b), A. serlpumata Zevina, 1987a, A. sublimat Zevina, 1987a, A. longa Zevina, 1988, A. tchesunovi Zevina, 1988, A. witred Zevina, 1988, A. galkini Zevina, 1990, A. mollat Zevina, 1990. A. beringiana Zevina et Galkin, 1992, A. laeniscuta Buckeridge, 1994, A. wertica Foster at Buckeridge, 1995a ($=$ A. obligua) and A. spongicole (Giruvel, 1911) n. comb.

DIAGNOSIS

Form erect; opercular plates erect, perpendicular to base; fixed scutum without adductor ridge or myophore; suture between rostrum and carina from linear to imbricate; bases of plates not inflected.

REMARKS

In this genus I include V. inermis Aurivillius, 1898, which is described in detail by Gruvel (1920). Its steep pattern of growth, poorly deve-
loped imbricating suture between the rostrum and the carina places this species in Altiverruca. Due to the placement of Spongoverruca as a junior subjective synonym of Altiverruca, I have also included Spongnverruca spongicola (Gruvel, 1911).

Genus Cameraverruca Pilsbry, 1916

Verruca Section C: Cameraverruca Pilsbry, 1916:39.
Vertuca (Cameraverwaca) - Foster 1978: 68.
Camenaverruca - Kevina 1987a: 1813. - Buckeridge 1994: 103.
'TYTE stecies. - Verruca euglypta Pilsbry, 1907a, by original designation (Pilsbry, 1916: 39), Recent, off Fernandina, Florida, $30^{\circ} 44^{\circ} \mathrm{N}, 79^{\circ} 26^{\prime} \mathrm{W}, 440$ fathoms.

Species included. - C. euglypta Pilsbry, 1907a, C. nodiscuta Buckeridge, 1994.

Diagnosis

Form with opercular plates forming angle of 45° with base: apical cavities of fixed tergum and rostrum partitioned off, forming recesses of general body cavity. Movable scurum with adductor ridge.

Genus Newmaniverruca n.g.

Verraca Section B: Verruca, Group of Verruca alba Pidsbry, 1916: 25 (in part).
Vermaa Section B: Verruea, Group of Verruca calotheca Pilsbry, 1916: 30 (in part).
Verruca (Vermea) - Foster 1978: 68 (in part), - Zevina 1987a: 1812 (in part). - Buckeridge 1994: 90 (in part).

Type species. - Verruca albatrossiana Pilsbry, 1912; Recent, east of Luzon, Philippines, 310 fathoms.

Species included. - N. imbricata (Gruvel, 1900b), N. radiata (Gruvel, 1901), N. multicostata (Gruvel, 1907), N. albatrosyinna (Pilsbry, 1912), N. barbutdensis (Pilsbry, 1916). N. entobapta (Pilsbry, 1916), N. flavidula (Pilsbry, 1916), N. zrex (Hoek, 1913) $(=$ N. albarrossiana) and. N. scrippsuc (Zullo, 1964).

Etymoloey. - Named in honor of Dr William A. Newman, who is largely responsible for my studies
on cirripeds, and for his interesting discussions about barnacles.

Diagnosis

Form box-like, opercular plates parallel or almost parallel with base; umbo of carina and rostrum marginal, without secondary ridges and myophore.

Remarks

The species N. albatrossiana (Pilsbry, 1912) is designated herein as the type species of Newmaniverruca n.g. because it is the first well recognised species. The species described by

Gruvel (N. imbricata, N, radiata, and N. multicostata) are too briefly described and have not been collected again (Gruvel 1900b, 1901, 1907).

I am assigning specific status to the subspecies of calothern and allo, because many of these subspecies become separated at the generic level (Newmaniverruca n.g. and Costatoverruca n.g.) in the classification formulated here. The species described by Gruvel are tentatively included in this genus by the absence of the secondary ridges on the rostrum; no information was cited on the internal surface of the fixed-scutum.

Key to species :

1a. Shell with conspicuous radial ridges directed toward the base of the plates 2
1b. Shell without radial ridges on the plates, only those directed to the rosrrum-carina
articulation .. 3
2a. Rostral area of scutum smooth; carina snraller than rostrum
\qquad
2b. Rostral area of scutum transversely grooved; carina larger than rostrum \qquad
\qquad
3a. Opercular plates nearly parallel with base of shell 4
3b. Opercular plates forming an angle with base of shell N. flavidula (Pilsbry)
4a. Tergum with three articular ridges N. barbadensis (Pilsbry)
4b. Tergum with four articular ridges 5
4c. Tergum with five articular ridges .. imbricata (Gruvel)
5a. Scutum with three articular ridges .. N. scrippsae (Zullo)
5b. Scutum with four atricular ridges ... 6
Ga. All four arcicular ridges well developed N. entobapta (Pilsbry)
6b. Only the two lower articular ridges well developed N. radiata (Gruvel)

Genus Costatoverruca n.g.
Verruca Scction B: Verruca, Group of Verruca alba Pilsbry, 1916: 25 (in part).
Verruca Section B: Verruca, Group of Verruca calotheca Pilsbry, 1916: 30 (in part).
Verruca (Vermuar) - foster 1978: 68 (in part). - Zevina 1987a: 1812 (in part). - Buckeridge 1994: 90 (in part).

Type species. - Verruca alba Pilsbry, 1907a; Recent, Straits of Florida, $24^{\circ} 25^{\prime} 45^{\prime \prime} \mathrm{N}-81^{\circ} 46^{\prime} 45^{\prime \prime} \mathrm{W}$, 45 fathoms.

Species incllurnd. - C. cornuta (Aurivillius, 1898), C. allar (Pilstry, 1907a), C. calotheca (Pilsbry, 1907a), C grimaldi (Gruvel, 1912a), C. carilliea (Pilsbry, 1916), C. beteropoma (Pilsbry, 1916), C. floridana (Pilsbry, 1916), C. xanthia insculpta (Pilsbry, 1916), C. xanthia (Pilsbry, 1916), C. niasiensis
(Nilsson-Cantell, 1929), C. pacifica (Buckeridge, 1994), and C. simuosa (Foster et Buckeridge, 1995b).

Etymoliont. - from the Greek costata (ridge), referring to the presence of secondary ridges on the rostrum.

Diagnosis

Form box-like, opercular plates parallel or almost parallel with base; umbo of carina and rostrum marginal, rostrum with secondary ridges, seldom on carina; with pit for adductor muscle, usually adductor ridge or myophore.

Remarks

C. alba (Pilsbry, 1907a) is designated as the type species of Costatoverruca n.g. because it is the first species described and illustrated. Aurivillius (1898) presented a brief description of V. comuta, with no illustrations.

The species C. cornula and C. pacifica were previously included in Metaverruca due to the presence of the myophore (Buckeridge 1994; Young in press), but both species have well developed secondary ridges on the rostrum, the diagnostic feature of Costatoverruca n.g.

Key to species :

1a. Rostral area of scutum smooth 2
1b. Rostral area of scutum with longitudinal ridges 3
2a. Scutum with two thin articular ridges; tergum with four articular ridges C. grimaldi (Gruvel)
2b. Scutum with three articular ridges, only the axial thin; tergum with three articular ridges C. xanthia (Pilsbry)
2c. Scutum and tergum with only a minute axial ridge
C. sinuosa (Foster et Buckeridge)
3a. Tergum with three articular ridges 4
3b. Tergum with four or more articular ridges 7
4a. Well developed myophore present 5
4b. Myophore absent 6
5a. Scutum smaller than tergum; fixed-scutum with a well developed upper triangular area C. cornuta (Aurivillius)
5b. Scutum larger than tergum; without upper triangular area
C. xanthia insculpta (Pilsbry)
6a. Caudal appendage with twenty-three articles, more than three times length of pro- topod
6 b . Caudal appendage with fourteen articles, 1.5 times length of protopod C. heteropoma (Pilsbry)
7a. Carina without secondary ridges; caudal appendage twice or less the length of pro- topod 8
7b. Carina with secondary ridges; caudal appendage more than 2.5 times length of protopod C. alba (Pilsbry)
8a. Interlocking ridges of carina and rostrum subequal 9
8b. Interlocking ridges of carina and rostrum conspicuously larger in the upper por- tion 10

9a. Cirri I and II with anterior abour one third length of posterior rami; caudal appendage with twenty-seven arricles \qquad C. caribbea (Pilsbry)

9 b . Cirrus I and II with rami of nearly equal length; caudal appendage with twenryone articles \qquad C. niasiensis (Nilsson-Cantell)

10a. Articular margins of scutum and tergum, in internal view, sinuous; caudal appendage with fourteen articles, slightly longer than protopod \qquad
\qquad
10b. Articular margins of scurum and tergum, in internal view, essentially straight, with only one tooth above; caudal appendage with 24-26 articles, more than rwice length of protopod
C. pacifica (Buckeridge)

Genus Rostratoverruca Broch, 1922
Verruca Section B: Verruca, Group of V nexa Pilsbry, 1916: 29.
Verruca Section Rostratowerruca Broch, 1922: 298.
Verruca (Rostratoverruca) - Broch 1931: 46. - Foster 1978: 68.
Rostratoverruca - Zevina 1987a: 1813. - Buckeridge 1994:118.

Type species. - Verruca nexa Darwin, 1854, by subsequent designarion Zevina (1987a: 1813); Recent, West Indies, on a gorgonian,

Species included. - R. nexa (Darwin, 1854), R. koebleri (Gruvel, 1907), R. conchuld minor (Hock, 1913), R. intexta (Pilsbry, 1912), R. conchuta (Hoek, 1913) ($=$ R. intexta), R. nexa multiradiata (Nilsson-Cantell, 1921), R. kruegeri (Broch, 1922), R. kruegeri multisculpa (Hiro, 1933), R. murrayi (Subbbings, 1936) $(=$ R. intexta), R. sewelli (Stubbings, 1936), and R. malcuichi Zevina, 1988.

Diagnosis

Form box-like, opercular plates parallel with base; umbo of carina marginal; umbo of rostrum displaced from margin; myophore absent.

Genus Brochiverruca Zevina, 1993b
Brochiverruca Zevina, 1993b: 9. - Buckeridge 1994: 105.

Type species. - Verruca dens Broch, 1931, by original designation (Zevina 1993b); Recent, Key Islands,
$05^{\circ} 46^{\prime} \mathrm{S}-132^{\circ} 51^{\prime} \mathrm{E} .348$ meters, on a Madreporarian coral.

Species included. - B. dens (Broch, 1931), B. margulisze Zevina, 1993b, and B. polystriata Buckeridge, 1994.

Diagnosis

Form box-like, opercular plates parallel with base; umbo of carina and rostrum displaced from margin; myophore absent.

Genus Metaverruca Pilsbry, 1916
Verruca Section A: Metaverruca Pilsbry, 1916: 21.
Verruca (Metaverruca) - Broch 1931: 41. - Foster 1978: 68.

Metaverruca - Zevina 1987a: 1812. - Buckeridge 1994: 108.

Typi, sprectes. - Verruca coraliophila Pilstry, 1916, by original designation; Recent, between Bahamas and Cape Fear (see Pilsbry 1916: 22, footnote).

Sphcies included. - M. reta (Aurivillius, 1898), M. suzdpat (Aurivillius, 1898) ($=$ M. recta), M. argiualis (Aurivillius, 1898), M. lineati- (Gruvel, 1900b) ($=$ M. rectat), M. arsullatia (Cruvel, 1900b), M. striata (Cruvel, 1900b) $(=$ M. trisulcata), M. magna (Gruvel, 1901) $(=$ M. recta), M. Walotheca (Pilstiry, 1907b) $(=$ M. Jecta) , M. capsulat (Hock, 1913) $(=$ M. retta $)$, M. coralioplitila (Pilsbry, 1916) (= M. reta), M. corrugata (Broch, 1931), M. matani (Srubbings, 1936), M. tarasodi (7evina, 1971), M. lepista (Zevina, 1987b), M. seriola (Zevina, 19876), M. pallida Zevina, 1990. M. defigeae Buckeridge, 1994, M. norfolkensis Buckeridge, 1994, M. plicata Buckeridge, 1994, and M. reunioni Foster et Buckeridge, 1995b.

Diagnosis
Form box-like, opercular plates parallel with base; umbo of carina and rostrum marginal,
without secondary ridge; myophore well developed, basal margin of plates enlarged, sometimes fused.

Key to species :

1a. Shell with conspicuous radial ridges 2
1b. Shell without radial ridges 4
2a. Numerous fine radial ridges, with eleven or more ridges on each plate 3
2 b . Few large radial ridges, with ten or fewer ridges on each plate
M. trisulcata (Gruvel)
3a. Caudal appendage with seven articles, shorter than protopod
M. corrugata (Broch)
3b. Caudal appendage with twenty-seven articles, more than twice length of protopod M. plicata Buckeridge
4a. Opercular valves with or without a barely defined articular ridge 5
4b. Opercular valves with at least one articular ridge conspicuous 6
5a. Opercular plates small in relation to the shell, carina and rostrum with a straight articulation M. pallida Zevina
5b. Opercular plates large in relation to the shell, carina and rostrum with a single large articular ridge M. reunioni Foster et Buckeridge
6a. Opercular plates nearly parallel with the base of the wall 7
6b. Opercular plates forming a distinct angle with the base of the wall 12
7a. Tergum with three articular ridges 8
7 b . Tergum with four articular ridges 9
8a. Shell smooth, carina and rostrum apical margins straight
M. recta (Aurivillius)
8 b . Shell with grooves between the opercular valves ridges; carina and rostrum mar- gins concave M. aequalis (Aurivillius)
9a. Scutum with three articular ridges 10
9b. Scutum with four articular ridges 11
10a. Rostrum and carina articulation with three ridges; radii-process of fixed scutum small M. macani (Stubbings)
10b. Rustrum and carina articulation with four ridges; radii-process of fixed scutum large M. tarasowi (Zevina)
11a. Rostrum and carina articulation with as many as three ridges; mandible with fiveteethM. defayeae Buckeridge

11b. Rostrum and carina articulation with as many as five ridges: mandible with three teeth
 \qquad M. norfolkensis Buckeridge

12a. Scutum with a beaked apex; caudal appendage with six articles
M. lepista (Zevina)

12b. Scutum with an obtuse apex; caudal appendage with eleven articles \qquad M. seriola (Zevina)

Genus Verruca Schumacher, 1817

Verruca Schumacher, 1817: 35. - Darwin 1854: 496 (in part).
Verruca Section B: Verruca, Group of V. strömia Pilsbry, 1916: 23.
Verruca (Eu-Verruca) Broch, 1931:45.
Verruca (Verruca) - Foster 1978: 68 (in part). Zevina 1987a: 1812 (in part). - Buckeridge 1994: 90 (in part).

Type species. - Lepas stroemia Müller, 1776, by
monotypy; Recent, no locality (Schumacher, 1817: 91).

Species included. - V. stroemia (Müller, 1776); V. spengleri Darwin, 1854; V. laevigata (Sowerby, 1827), and V. cookei Pilsbry, 1927.

Diagnosis

Form depressed, opercular plates parallel with base, proportionately small; umbo of carina and rostrum marginal, without secondary ridge; myophore well developed, projecting parallel to hase.

Key to species :

1a. Movable scutum with adductor ridge 2
1b. Movable scutum without adductor ridge 3
2a. Caudal appendage with nine articles, one half length of cirrus VI \qquad V. spengleri Darwin
2b. Caudal appendage with eleven arricles, two third length of cirrus VI \qquad V. cookei Pilsbry
3a. Width of scutum less than its length, the second articular ridge narrower than the first articular ridge V. stroemia Müller
3b. Width of scutum more than its length, the second articular ridge broader than the first articular ridge \qquad V. laevigata Sowerby

THE AZORES FAUNA

Including the species reported herein and those of previous studies on the Azores Region (Hoek 1883; Aurivillius 1898; Gruvel 1900a, b, 1902a, 1920; Pilsbry 1916; Zevina 1976; Baker 1967; Newman \& Ross 1977; Young in press) there are a total of sixty-one taxa in this region. Twelve of
these taxa are considered synonymous, viz: S. edwardsi and S. alboranense ($=$ Neoscalpellum debile), S. crectum and S. velutinum ($=$ Arioscalpethum michslomanum), S. striatum ($=$ Amigdoscapellum rigidam). S. malle (= Trianguloscalpcllum regium), S. gigas Gruvel, 1902 (= Triunguloscalpellum ovale, not S. giguts Hoek), V. sculpta and V. linearis (= Metaverruca recta),
S. vitreum Zèvina, 1976 ($=$ S. rigidum); T. squamosa elegans Baker, 1967, and Tesserapora atlantica Newman et Ross, 1977 (part, specimens from Azores) ($=$ Tesseroporil arnoldin.sp.).
Within the remaining fifiy-one species, four records are probahly misidentifications by Gruvel (1905, 1920): V. stroemia, B. amphitrite, B. spongicola and B. crenatus: Verruca strocmia and B. crenatus are northern shallow water species and were only recorded once from the Azores Region. Balanus amphitrite and B. spongicola have not been recorded again since Gruvel (1905, 1920).
The species of Toecilusma are poorly defined and, therefore, there is the possibility that the three species recorded are synonymous. Two species, P. aurantia and P crassum, are definitely known in this region. The list of species is,. therefore, reduced to forty-five, which includes twentyeight lepadomorphs, deven verrucomorphs and six balanomorphs (Appendix 2).
The endemism of the Azores appears to be high, fourteen species (31%). Three species occur in the Azores and Madeira Islands, and Great Meteor Bank, which gives an endemism of this larger area to 38%. Furthemore, four species occur at the lberian Basin, with records also off the Iberian Peninsula and Morocen coast, which expands the endemism ratio to 47%. The remaining species usually have a Northeastern Atlantic distribution or greater (Appendix 2). The Azores fauna does not share any species with Tropical Africa.
Conversely, it is interesting to note the low species richness in shallow waters (less than 200 m). Tesseropora arnoldi and M. azoricus are endemic to the Azores, V. spengleri occurs also in Madeira. Chthamalus stellatus is recorded along the European and North African coasts and B. trigonus, which has a world-wide distribution, may have been recently introduced to the Atlantic (Zullo 1992).
In the Northeastern Atlantic the deep sea species are reasonably well sampled along the Azores-Madeira-Grear Mereor area (Iberian and Canary Basins) and the North Sea (Norwegian Basin) but they are still poorly sampled in the West European Basin.
The deep sea faunas of the Norwegian Basin and
of the Iberian/Canarian Basins do not share any common species, except for Sialpellum scalpellum, a species with a wide depth range of $10-540 \mathrm{~m}$, but usually berween 30 and 200 m . It is recorded from shallow waters of the Iberian Peninsula and scattered localities along the North African coast (Nilsson-Cantell 1978).

Acknowledgements

I wish to acknowledge Jacques Forest for allowing me to study this collection and also for information about the Biaçores Expedition; William Λ. Newman and Arnold Ross, for numerous discussions during this study and their comments on the manuscript, which significantly improved this paper; John S. Buckeridge, Diana Jones and Annemaric Ohler for providing useful comments on the manuscript; Florence Kerdoncuff for helpful assistance with the manuscript revision. This srudy was supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) and additional financial support from Fundaçāo Universitária José Bonifắcio (FUJB).

REFERENCES

Anderson D. T. 1980. - Cirral acrivity and feeding in the Verrucomorph barnacles Verruca recta Aurivillius and V. stroemia (O. F. Müller) (Cirripedia). Journal of he Mrrine Biolagical Association of the Chitted Kingtion 60: 349-366.
Aurivillius C. W. S. 1894. - Seudien uber Cirripeden, Kúngliga Svenskn Vetenskaprakademiens Haudlingar 26 (7): 1-107.
Aurivillius ${ }^{\circ}$ C. W. S: 1898. - Cirrhipédes nouverux provenant des Campagnes Scientifiques de S. A. 5 . le Prince de Monaco. Bulletin de la Société Zoologique de France 23: 189-198.
Bacon P. R. 1976. - The Cirripedia of Trinidad. Stuclies on the Fauna of Curagao and Other Catibbean Islands 50: 1-55.
Baker I. H. 1967. - Cirripedia. Chelsea College Azores Expedition, July-October 1965: 46-47.
Bayer I. M., Voss G. L. \& Robins C. R. 1970. Cirripedia: A43. in: Report on the marine fauna and benthic shelf-stope communities of the Isthmian Region. Bianuironmental and radialagicat-safery fensibiliny studies Atlantic-Paifice interoceanic canal, Battelle Memorial Institute, Columbus.

Belloc G. 1959. - Catalogue des types de Cirrhipèdes du Musếe océanographique de Monaco. Bulletin de l'Institut Océanographique. Monaco (1157): 1-7.
Broch H. 1922. - Papers from Dr. Th. Mortensen's Pacific Expedition 1914-1916. Studies on Pacific Cirripeds. Videnskabelige Meddelelser fra Dansk Naturhistorish Forening 73: 215-358.

- 1931. - Papers from Dr. Th. Mortensen's Pacific Expedition: 1914-1916. Indomalayan Cirripedia. Videnskabelige Medeleledser fra Dansk Naurbistorisk Forening 91:1-146.
- 1953. - Cirripedia Thoracica. Danish Ingolf. Expedetion 3 (14): 1-16.
Buckeridge J. S. 1975. - The significance of Cirripedes to the paleoccology of Morurapu Island. TANE, Journal of Auckland University Field Club 21: 121-129.
- 1983. - Fussil barnactes (Cirripedia: 'Thoracica) of New Zealand and Australia. Paleont. Bulletin of New Zealiand Grologizal Survey 50: 1-151, 13 pls.
- 1994. - Citripedia Thoracica: Verrucomorpha of New Catedonia, Indonesid, Wallis and Futura Islands, in Crosniér A. (ed.), Résulsats des Campagnes MUSORSTOM, 12, Memaires de Musium national d'Histrive naturelle 161:87-125.
- 1997. - Cirtipedia Thoracias: New ranges and species of Verricomorpha from the Indian and Southwest Pacific Occans, in Crosnier A. (ed.), Résulcars des Campagnes MUSORSTOM, 18. Mémoires de Musétum national d'Histoire maturelle 176: 125-149.
Calman W. T. 1918. - On barnacles of the genus Scalpollurn from deep-sea telegraph-cables. Annals and Magazine of Natural Hittoy, Series 9, 1:96-124. 1919. - On bannades of the genus Megataitha from deep-sea telegraph-cables, Anads and Maguzime of Natural Histor, Series 9, 4: 361-374.
Darwin C. 1852. - A Mondograph on the Subrlass Cirripedia, with figures of thl she species. The Lepadidae: or pedunatare ciiripedes. Ray Sociecy, London, 400 p .
- 1854. - A Mongrutph on the Subclass Cirripedia, with figures of all the species. The Balanidae, the Verrucidue, etc. Ray Society, London, 684 p .
Edward: A. \& Lubbnck. R. 1983a. - The ecology of Saint Paul's Rocks (equatorial Adlantic). Journal of Zoulagy 200; 51-69.
Edward' A. \&r Lubbock R. 1983b. - Marine zoogeography of Saint Paul's Rocks. Journal of Biogrogmphy 10:65-72.
Fischer P. 1871. - Crustacés Podophuthalmaires et Cirrhipedes du Départemenr de la Gironde et des côtes du Sud-Ouest de la France. Actes de ha Suciété Linniçnne de Bordeaux, séries 3. 28 : 405-432.
Foster B. A. 1978. - The marine fauna of New Zealand: Barnactes (Cirripedia: Thoracica). Memairs. New Zealand Uceanographic Institute 69: 1-160.
- 1981. - Cirripedes from the ocean ridges north of

New Zealand. New Zealaud Journal of Zoulogy 8: 349-367.
Foster B. A. \& Buckeridge S. S. 1995a. - Barnacles (Cirripedia: Thoracica) of seas off the Straits of Gibralar. Bulletin du Mustum National d'Histoire Naturelle, Paris, série 4, 17: 163-191.

- 1995b. - Barnacles (Citripedia: Thoracica) of seas off Réunion Island and East Tndies. Bullecin du Musénm nationat d'Histoive naturelle, Paris, série 4, 16:345-382.
Gordon J. A. 1970. - An annotated checklist of Hawailian barnacles (Class Crustacea; Subclass Cirripedia) with notes on their nomenclature, habitats aud Hawaiian localities. Hawdi Institute of Marine Biology, Technical Reparts 19: 1-1 30.
Gruvel A. 1900.a. - Sur quelques espèces nouvelles du gente Scalpellum provedant des dragages du "Talisman". Bulletin du Mustum d'Histoire naturelle, Paris 6: 189-194.
- 1900 b . - Sur les espèces nouvelles du genre Verruca provenants du "Talisman", Batletin du Mustum d'Histoire maturelle, Paris 6: 242-244.
- 1901. - Diagnoses de quelques espèces nouvelles de Cirthipèdes. Bulletion du Muséun d'Histoire Naturelle Paris $7: 256-263$.
- 1902a. - Cirrhipedes; 1-178, pls 1-7, in Expeditions Serientifiques' du "Travailleur" et du "Talisman", pendart les annies 1880, 1881, 1882, 1883. Masson, Patis, 178 p.
- 1902b. - Sur quelques especes nouvelles de la collection du British Muscun. Transations of the Linnean Sotinty of Londan, Zoology, Series 2, 8: 277-294, pl. 24.
- 1902c. - Catalogue des Cirrhipèdes appartenant à la collection du Musćum. Bulletin du Muséum d'Histoire Naturelle. Marseille 8 ; 522-526.
- 1905. - Monograplie des Cirrhipedes ou 7 hecastraces. Masson et Cic Editeurs, Jaris, 472 p.
- 1907. - Cirthipedes Operculés de l'Indian Museum of Calcurta. Memarrs of the Asiatic Society of Bengal 2 (1): 1-10.
- 191i. - Sur deux espéces nouvelles de Cirrhipedes appartenant à la collection du Muséum. Bulletion du Musćum d'Histoire naturelle, Paris 17 (5) : 290-291.
- 1912a. - Nore préliminaire sur les Cirthipèdes recueillis pendant les campagnes de S. A. S. le Prince de Monaco. Bulletin de Ilnstitut Océtnographigue (241): 1-7.
- 1912b. - Mission Gruvel sur la côte occidenrale d'Afrique (1909-1910) et collection du Muséum d'Histoire naturelle. Les Citrhipèdes. Bulletin du Musium d'Histoire naturelle, Paris 18 (6): 344350.
- 1920. - Cirrhipédes ptovenant des campagnes scientifiques de S. A. S. le Prince de Monaco. Résultats des Campagnes Scientifinues accomplies sur son yacht Albert Irt, Lirince Sowverain de Monaco 53: 1-89, pls 1-7.

Henry D. B. \& McLaughlin P. A. 1986. - The Recent species of Megabalanus (Cirripedia: Balanomorpha) with special emphasis on Balanus tintinnabulum (Linnaeus) sensu lato. Zoologische Verbandelingen (235): 1-69.
Hoek P. P. C. 1883. - Repon on the Citripedia collected by H. M. S. Challenger during the years 1873-76. Report an the Scientifis Results of the Voyage of H. M. S. Challenger Daring the Years 1873-1876. Loology, part 25, 8: 1-169.

- 1884. - Report on the Cirripedia collected by H. M. S. Clallenger during the years 1873-76. Anatomical Part. Report om the Sciemific Results of the Vovage of H. M. S. Challenger During the Vears 1873-1876. Zoology, part 28. 10: 1-47. pls 1-6.
- 1907a. - The Cirripedia of the Siboga Expedition. A. Cirripedia Pedunculata. Siboga Expeditie 31a: 1-127, pls 1-10.
- 1907b. - Cirripedia. Rêsulturs du V'oyage "S. Y. Belgica", Rapports Scieutifrques, Zoologic: 3-9.
- 1913. - The Cirripedia of the Siboga Expedition. B. Cirripedia Sessilia, Sibaga Expeditie 31b: 129-275, pl. 11-27
- 1914. - Cirripedia. "Michat Sars" North Aslantic Deep-sea Expedition 1910, Zoology 3: 1-6.
Kolosváry, G. 1945. - Cirripedia Thoracica in der sammlung des Ungarischen National-Museums. Annales Ifistoriro Naturales Musei Nationalis Hungari:i 36: 67-120.
- 1947. - Die Balaniden der Adria. Annales Historico Naturales Musei Nittionalis Hungarici 39 (1): 1-88.

1951. - Les Balanides de la Méditerranée. Acta Biologica Academiae Scientiarum Hungaricae 2 (4): 411-413.
Krüger P. 1940. - Cirripedia. in: Bronns H. G. (ed.). Klassen und Ordnungen des Tierreichs, Leipzig, 5 (3): 1-391.
Lahille F. 1910. - Los Cirripedios en la Argentina. Revista del Jardin Toologico Buenos Aires, serie 2, 6: 69-89.
Leta A. C. \& Young P. S. 1995 [1996]. - First record from the fanily Oxynaspididae (Crustacea, Ciripedia) from the Southwestern Atlantic. Nauplivs 3: 23-31.
Linnaeus C. 1758. - Systemaz maturate. Reformata 1: 1-824. Holmiac, Edifio Dccima.

- 1767. - Systcma saturite. Reformata 2: 533-1327. Holmiae, Editio Duodecima.
Müller O. F. 1776. - Zoologiat Danicae Prodomus, seu Animalium Daniat et Norvegiae, indigenarum charatheres, nomina, et syzomyna imprimis popularium. Havniae, i-xxvii, 1-282.
Newman W. A. \& Ross A. 1971. - Antarctic Cirripedia. Antarctic Research Series 14: 1-257.
- 1976. - Revision of the balanomorph barnacles; including a catalog of the species. Memoirs of the San Diego Society of Natural History 9: 1-108.
- 1977. - A living Tesseropora (Cirripedia:

Balanomorpha) from Bermuda and the Azores: First records from the Atlantic since the Oligocene. Trunsactions of the San Dicgo Society for Natural History 18 (12): 207-216.
Nilsson-Cantell C. A. 1921. - Citripeden-Studien. Zur kenmmis der Biologie, Anatomic und Systenatik dieser Gruppe. Zoologiska Bidrag, frin Uppsala 7: 75-395, 3pl.

- 1927. - Some barnacles in the British Museum (Nat. Hist.). Proctedings of the Loological Socicty of Londor: 743-790,
- 1928. - Studies on cirripedes in the British Museuin (Nat. Hist). Annals and Magazine of Natural Histary, Series 10, 2 (7): 1-39.
- 1929. - Cirripedien des genus Verruca der Deurschen Tiefsee-Expedition auf dem Dampfer "Valdivia" 1898-1899. Zoologische falubbïcber 58: 459.480.
- 1931. - Cirripeds from the Indian Occan and Malay Archipelago in the British Museum (Nat. Hist.), London. Arkiv for Zoologi 23 A (18): 1-12.
- 1934. - Cirripeds from the Malay Archipelago in the Zoological Museum of Amsterdam. Zoologische Mededetingen 17: 31-63.
- 1938. - Cirripedes from the Indian Ocean in the collection of the Indian Muscum, Calentra. Momoiss of the Indian Musenm 13 (1): 1-81.
- 1955. - Cirripedia. Reports of the Swedish Deep-Sea Expedition, Zoolog' 2(17): 215-220.
- 1978. - Cirripodia Tharacica and Acrothoracica. Marine lumertebrates of Sicandinavia (5): 1-135.
Pilsbry H. A. 1907a. - The bamacles (Cirripedia) consained in the collections of the U.S. National Museum. Bulletin of the United States National Muscum 60: 1-122.
- 1907b. - Hawaiian Cirripedia. Bulletin of the Bureau of Fisheries 26: 181-204, pls 6-11.
- 1916. - The sessile batnacles (Cirripedia) contained in the collections of the U.S. National Museum; including a monograph of the American species. Bulletin of the United States Natimual Museum 93:1-366.
Poli G. S. 1791. - Testacea utritsque Siciliae, corumeme historin et andtome, talbulis deneis illustrata. Parmae, 2 volums and atias.
Relini G. 1969. - La distribuzione dei Cirripedi Toracici nei mare Iraliana - Arcbinio Botanico e Biagegraficu Italiuno, setic 4, 45 (4): 168-186.
Ren X. 1984. - Studiens on Chinese Cirripedia (Crustacea). IV. Family Verrucidac. Studia Marina Sinica 23: 165.179, pls 1-2 [in Chincsc].
- 1989. - On a collection of Cirripedia Thoracica from Madagaycar and adjacent waters. Bulletin du Mustum national d'Histoire naturelle, serie 4, A 11 (2) : 431-168.

Rosell N. C. 1981. - Crustacea: Cirripedia. Résultats des Campagnes MUSORSTOM. 1 (12), Méroires de Muséum national d'Histoire naturelle 91 277-307.

- 1989. - Thoracic Cirripeds from the MUSORSTORM 2 Expedition, in Forest J. (ed.), Résulcats des Campagnes MUSORS FORM, 5, Memoires dh Mustum mational d'Histoive naturelle (A) 144:9-35.
- 1991. - Crustacea Cirripedia Thoracica: Musorstom. Phillipincs collcetion, in Résultats des Campagncs MUSORSTOM 9 (1), Mémoires du Musium national d'Histoive naturelle (A) 152:9-61.
Ruggieri, G. 1953. - Exa e faune di um terrazzomarino sulla costa ionica della Calabria, Giomale di Geologits, serie 2, 17:95-113.
Ruggiect, G. 1977. - Le Vernuey del Pleistocene Neritioo della Sicilia. Il Naturalista Sicihano, serie IV, 1(1-4) 67-74.
Schumacher C. F. 1817. - Essai dun nonveat système des habitations ades vers Testack. Copenhagen, 287 p .
Seguenza G. 1876. - Ricerche palcontologiche intorno ai Cirripedi Terajarii della Provincia di Messina. Parte 11. Terza famiglia Lepadidi Darwin. Atti Dell'Accademia Pontoniama 10:369-481, pls 6-10.
Southward A. J. 1976. - On the taxomemic stants and distribution of Chthamaluy stellutus (Cirripedia) in the North-east Atlantic region: with a key to the common interidal barnades of Britain. foumat of the Marine Biological Assoctation of the United Kingridum 56: 1007-1028.
Southward A. J. © Southward E. C. 1958. - On the occurnence and behaviour of two liftle-known batnacles, Mexelfowm likbutum and Verticia recta, from the continental slope, Joternal of the Marine Biological Avaciasion of fine United Kingdom.37: 633-647.
Spengler L. 1792. - Beskrivelse over tvende nye anter af Lepas. Naturbist-Selskabet Kjabinbaun Skrifter 2 (11): 103-110, pt. 10.

Stubbings H. G. 1936. - Cirripedia. John Murray Expeclition, Scientific Reptors, Zadogy 4 (1): 1-70.

- 1964. - Cirripedia. Campagnes de la "Calypso": îles du Cap Vert. Anmales de PInstitut Océanagraphique 41 : 103-112.
- 1967. - The cirriped Fauna of tropical West Africa. Butletin of the British Museum (Natural History), Zoology 15 (6): 229-319.
Tarasov N. 1. \& 7 7evina C. B. 1957. - Cirripedia. Faunt $S S S R_{\text {r }}$ n.s. 69: 1-268 [in Russian].
Thomson C. W. 1873. - Notes from the "Challenget". Nature 8: 347-349.
- 1877. - The Vayage of the "Chatlenger". The Atlantic, 2. Macmillan and Co, London, 396 p .
Totton A. K. 1940, - New species of the Cirripede genus Oxymaspis, commensal with Antipatharia. Annals and Maygsine of Naturat History, Series 11, 36: 465-486.
Utinomi H. 1965. - A giant Antarctic barnacle Hexelasmat antareticum Borradaile (Cirripedia, Thoracica). Japatnese Antarctic Research Expedition 1956-1962, Scientific Reports, series E (25): 1-16.

Weishord N. E. 1979. - Lepadomorph and Verrucomorph barnacles (Cirripedia) of Florida and adjacent waters, with an addendum on the Rhizocephala. Bulletin of American Paleontology 76 (306): 1-156.

Wehner W. 1897. - Verzeichnis der bisher beschriebenen recenten Cirripedienarten. Mit Angabe der im berliner Museum vorbandenen Species und ihrer Fundorte. Archiof fir Naturgischichte 1 (3): 227-280.

- 1922. - Cirripedia der Deutschen TiefseeExpedition. Wissenschafthiche Ergebnisse der Deutschen Tiefsec-Exped. Dampfer "Valdivia" 1898-1899 (2): 1-112, pls II-IV.
Young P. in press. - The Ciripedia (Crustacea) collected by the Fisheries Steamer "Meteor" in the Eastern Átlantic. Senckenbergina Biotagita
Levina C. B. 1963. - Barnades inhabiting the Black Sea. Trudy Institua Okenologica 70: 72-75 [in Russian].
- 1969. - Cirripedia Thoracica: 66-68. in Kort V. G. (ed), The biology of the Facific Ocem, Deepsea botton fauna. 2 (1), Institur Okeanologia Akademy Nauka SSSR, Msoscour [in Russian].
- 1976. - Alysssal species of barnades (Cirripedia, Thoracica) of the North Atlantic. Zoologicheskii Zhurrat 55(8): [149-1156 jin Russian].

1978. - A new system of the family Scalpellidae Pislbry (Cirripedit, Thoracica). 2. Subfamilies Arcoscalpellinae and Meroscalpellinae. Zoologicheskii Zburnal 9: 1343-1352 [in Russian].

- 1981. - Barnades of ihe suburder Leppadomorpha of the world occan. I. Family Scalpellidae. Fauna USSRR, Zonlogicheskaii Instítut Akademy Nauka SSSR, 127: 1-406 [in Russian].
- 1982. - Barnacles of the suborder Lepadomorpha of the world ocean. II. Funau USSSR, Zoologicheskii Insticut Akademy Naula SSSRR, 133: 1-222 [in Russian).
- 1987. - Deep-sea Verrucomorpha (Cirripedia, Thoracica) of the Pacific. 1. The North Pacific. Zoologicheskii Zhurnal 66 (12): 1812-1821 [in Russian].
- 1987b. - Ahyssal Cirripedia Verrucomorpha (Thoracica) of the Axtantic and Indian Ocean. Zoologicheskii Zharad 66 (9): 1304-1313 [in Russianl.
- 1988. - Deep-sea Verrucomorpha (Cirripedia, Tharacica) of the Pacific. 2. The South Pacific. Zoologicbeskii Zhurnal 67 (1): 31 -40 [in Russian].
Zullo V.A. 1968^{-}- Catalog of the Cirripedia named by Henry A. Pilsbry. Procepdings of the Academy of Natural Sciences of Philadelphia 120 (5):209-235.
- 1992. - Balames triganus Darwin (Cirtipedia, Balanidae) in the Atlantic Basin: An imroduced speciss? Bulletin of Marine Science 50 (1): $66-74$.

APPENDIX 1

List of species per station. The numbers preceded by the letters L and P concern respectively intertidal hand collecting and scuba diving. The numbers without a letter refer to the stations from the Jean Charcot.

Station	Date	Location	Species
L5	2.X. 1971	Santa Maria Island (South), Praia	Chthamalus stellatus.
L7	5.X. 1971	Praia de Santos, "E. Roque", sur tube rejeté	Lepas anatifera,
L8	B.X. 1971	Terceira Island, West of Monte Brazil	Verruca spengleri, Balanus trigonus.
L9	11.X. 1971	Faiat Island, Horta	Tesseropora arnoldin.sp., Megabalanus azoricus.
L11	11.X. 1971	Faial Island, Caldeira do Inferno (South)	Chthamalus stellatus, Tesseropora arnoldi n.sp.
P3	1.X. 1971	Santa Maria Island, Ponta Malbusca, 12-25 m	Verruca spenglert, Balanus trigonus.
P4	2.X. 1971	Santa Maria Island, Ponta do Casteleto, 12-15 m	Verruca spengleri, Balanus trigonus.
P6	7.X. 1971	J. do Castro Bank $28^{\circ} 13^{\prime} \mathrm{N}-26^{\circ} 36^{\prime} \mathrm{W}$, $25-35 \mathrm{~m}$	Lepas anatifera, Balanus trigonus.
P7	8.X. 1971	Terceira Island, Ponta de S. Diego (West ol Monte Brazil), $5-40 \mathrm{~m}$	Verruca spengleri, Balanus trigonus, Megabalanus azoricus.
P8	10.X. 1971	Faral island, Horta (Port), $0-18 \mathrm{~m}$	Verruca spengleri, Balanus trigonus.
P9	11.X. 1971	Faial Island, Monte da Guia (East of Caldeira do Inferno), $5-15 \mathrm{~m}$	Verruca spengleri, Tesseropora arnoldi n.sp., Balanus trigonus.
P12	13.X. 1971	Faial istand, Ponta Furada, 0-7 m	Verruca spengleri.
P13	13.X. 1971	Faial istand, Horta, 3-18 m	Vernuca spengleri.
P14	15.X. 1971	S. Jorge Island, West of Cabo Monteiro, 40 m	Balanus trigonus.
P15	15.X. 1971	S. Jorge Island, West of Cabo Monteiro, 27 m	Balanus trigonus.
P17	16.X. 1971	Graciosa Island, Calle de Folga, 2.8 m	Verruca spengleri, Bälanus trigonus.
P19	18.X. 1971	Faial Island, Monte da Guia, 20 m	Verruca spengleri.
P23	22.X. 1971	Flores Island, North of Santa Cruz, 15 m	Verruca spengleri.
P24	22.X. 1971	Flores Island, liheu da Muda, 22-30 m	Verruca spengleri.
P27	27.X. 1971	Sảo Miguel Island, Caloura (South), 0-10 m	Verruca spengleri.
P29	28.X. 1971	Sāo Miguel Island, Ponta da Galera (South), 7-18 m	Verruca spengleri, Tesseropora arnoldi n.sp., Balanus rigonus.
P30	$\text { 29.X. } 1971$	Săo Miguel Island, Caloura (S.), 0-6 m	Verruca spengleri.
P33	30.X. 1971	São Miguel Island, Santa Clara, Ponta Delgada (Sóuth), $7=15 \mathrm{~m}$	Verruca spengleri.
P34	31.X. 1971	São Miguel Island, Ponta de Galera (Southeast), $10-12 \mathrm{~m}$	Balanus trigonus.
P38	2.XI. 1971	Sảo Miguel Island, Ilheu dos Mosteiros (W.), 2-37 m	Megabalanus azoricus.
P41	4.XI. 1971	Sāo Miguel Island, Morro das Capelas (N.), 15-20 m	Balanus trigonus, Megabalanus azoricus.
P44	8. XI .1971	Formigas island. $35-45 \mathrm{~m}$	Oxynaspis celata.
1	7.X. 1971	$38^{\circ} 13^{\prime} \mathrm{N}-26^{\circ} 36^{\prime \prime} \mathrm{W}, 40-50 \mathrm{~m}$	Verruca spengleri, Balanus trigonus.
4	7.X. 1971	$38^{\circ} 11,5{ }^{\prime} \mathrm{N}-28^{\prime 3} 38.5{ }^{\prime} \mathrm{W}, 1200-1080 \mathrm{~m}$	Metaverruca recta.
6	7.X. 1971	$38^{\circ} 14^{\prime} \mathrm{N}-26^{\circ} 38.5{ }^{\prime} \mathrm{W}, 570 \mathrm{~m}$	Altiverruca gibbosa, Bathylasma hirsutum.

Station	Date	Location	Species
10	8.X. 1971	$38^{\circ} 39^{\prime} \mathrm{N}-27^{\circ} 14,5^{\prime} \mathrm{W}, 28-33 \mathrm{~m}$	Balanus trigonus.
11	8.X. 1971	$38^{\circ} 30 \times \mathrm{N}-27^{\circ} 14,5^{\prime} \mathrm{W}, 105-76 \mathrm{~m}$	Balanus trigonus.
14	4. XII. 1968	$47^{\circ} 56,3 \mathrm{~N}=07^{\circ} 32,8^{\prime} \mathrm{W}, 214-235 \mathrm{~m}$	Verruca stroemia.
16	8.X. 1971	$38^{\prime \prime} 39^{\prime} \mathrm{N}-27^{\circ} 21^{\prime} \mathrm{W}, 990-880 \mathrm{~m}$	Metaverruca recta.
46	12.X. 1971	$37^{\prime \prime} 34^{\prime} \mathrm{N}-28^{\circ} 54^{\prime} \mathrm{W}, 784 \mathrm{~m}$	Bathylasma hirsutum.
60	14.X. 1971	$38^{\circ} 33,5^{\prime} \mathrm{N}-28^{\circ} 33^{\prime} \mathrm{W}, 66-70 \mathrm{~m}$	Balanus trigonus.
61	14.X. 1971	$38^{7} 34^{\prime} \mathrm{N}-28^{\circ} 32,5^{\prime} \mathrm{W}, 77 \mathrm{~m}$	Verruca spengleri.
62	14.X. 1971	$38^{\prime \prime} 39,5^{\prime} \mathrm{N}$ - 28"37,5'W, 800-736 m	Poecilasma aurantia, Metaverruca recta, Costatoverruca cormuta.
66	15.X. 1971	$38^{\prime} 34.5^{\prime} \mathrm{N}=28^{\prime \prime} 19.5^{\prime} \mathrm{W}, 1260-1225 \mathrm{~m}$	Metaverruca recta, Arcoscalpellum tritonis.
73	15.X. 1971	$38^{\prime \prime} 30^{\prime} \mathrm{N}-277^{\prime} 51,5^{\prime} \mathrm{W}, 245 \mathrm{~m}$	Heteralepas microstoma.
89	17.X. 1971	$39^{\circ} 04.5^{\prime} \mathrm{N}-28^{\circ} 07.5^{\prime} \mathrm{W}, 358-406 \mathrm{~m}$	Oxynaspis palens.
105	20.X. 1971	$39^{\circ} 35 \mathrm{~N}=31^{\circ} 23^{\prime} \mathrm{W}, 1550 \mathrm{~m}$	Arcoscalpellum michelotianum.
120	22.X. 1971	$39^{\circ} 03,5^{\prime} \mathrm{N}=32^{\prime} 43,5 \mathrm{~W}, 2100 \mathrm{~m}$	Lepas pectinata.
129	23.X. 1971	$38^{\prime \prime} 58^{\prime} \mathrm{N}-33^{2} 26,5^{\prime} \mathrm{W}, 3056-3000 \mathrm{~m}$	Trianguloscalpellum regium, Teloscalpellum luteum.
131	24.X. 1971	$39^{\circ} 04,5^{\prime} \mathrm{N}-32^{\circ} 43,5 \mathrm{~W}, 2120 \mathrm{~m}$	Lepas peclinata, Neoscalpellum debile.
135	25.X. 1971	$39^{\circ} 24.5{ }^{\prime} \mathrm{N}-31^{\prime} 05.5^{\prime} \mathrm{W}, 860-760 \mathrm{~m}$	Metaverruca recta.
139	26.X. 1971	$38^{\prime \prime} 36,5$ ' $\mathrm{N}-28^{\prime} 17,5^{\prime} \mathrm{W}, 1260 \mathrm{~m}$	Metaverruca recta.
142	30.X. 1971	$37^{\circ} 41,5^{\prime} \mathrm{N}-25^{\circ} 31^{\prime} \mathrm{W}, 103 \mathrm{~m}$	Verruca spengleri.
143	30.X. 1971	$37^{\circ} 42^{\prime} \mathrm{N}-25^{\circ} 32^{\prime} \mathrm{W}, 69-61 \mathrm{~m}$	Verruca spenglert, Balanus trigonus.
148	30.X. 1971	$37^{\circ} 34,5^{\prime} \mathrm{N}-25^{\circ} 34,5^{\prime} \mathrm{W}, 847-870 \mathrm{~m}$	Poecilasma aurantia, Metaverruca recta, Costaloverruca cornuta.
150	30.X. 1971	$37^{\circ} 37^{\prime} \mathrm{N}-25^{\circ} 35^{\prime} \mathrm{W}, 600-550 \mathrm{~m}$	Metaverruca recta. Costatoverruca cornuta.
151	30.X. 1971	$37^{\circ} 37,5^{\prime} \mathrm{N}-25^{\circ} 39,5^{\prime} \mathrm{W}, 788-780 \mathrm{~m}$	Metaverruca recta, Costatoverruga cornuta
157	31.X. 1971	$37^{\circ} 33,5^{\prime} \mathrm{N}-25^{\circ} 43,5^{\prime} \mathrm{W}, 826.787 \mathrm{~m}$	Poecilasma auranlia. Costatoverruca cornuta.
159	31.X. 1971	$37^{\circ} 26^{\prime} \mathrm{N}-25^{\circ} 51^{\prime} \mathrm{W}, 600-525 \mathrm{~m}$	Poecilasma aurantia, Metaverruca recta, Altiverruca gibbosa, Costatoverruca cornuta.
161	31.X. 1971	$37^{\circ} 39,5^{\prime} \mathrm{N}-25^{\circ} 50.5^{\prime} \mathrm{W}, 590 \mathrm{~m}$	Metaverruca recta, Costatoverruca comuta
168	1.XI. 1971	$37^{\prime \prime} 48.5$ ' N - $25^{\prime \prime} 54{ }^{\prime} \mathrm{W}, 800-665 \mathrm{~m}$	Metaverruca recta.
171	1.XI. 1971	$37{ }^{\circ} 58,5^{\prime} \mathrm{N}-26^{\circ} 07^{\prime} \mathrm{W}, 3215 \mathrm{~m}$	Metaverruca aequalis.
174	2.XI. 1971	$38^{\circ} 06^{\prime} \mathrm{N}-26^{\circ} 15 \mathrm{~W}, 3094-3038 \mathrm{~m}$	Amigdoscalpellum rigidum, Metaverruca aequalis.
176	2.XI. 1971	$38^{\circ} 00,5^{\prime} \mathrm{N}-26^{\circ} 21,5^{\prime} \mathrm{W}, 2720-2440 \mathrm{~m}$	Amigdoscalpellum rigidum.
179	3.XI. 1971	$38^{\circ} 05,5^{\prime} \mathrm{N}-25^{\circ} 46^{\prime} \mathrm{W}$, 1665-1590 m	Smilium acutum.
180	3.XI. 1971	$37^{\circ} 57,5^{\prime} \mathrm{N}-25^{\circ} 33^{\prime} \mathrm{W}, 1235-1069 \mathrm{~m}$	Glyptelasma hamatum, Poecilasma aurantia, Arcoscalpellum michelottianum, Altiverruca obliqua, A. gibbosa. Metaverruca aequalis, M. recta, Bathylasma hirsutum. Hexelasma americanum.
181	3.XI. 1971	$37^{\circ} 53^{\prime} \mathrm{N}-25^{\circ} 35,5^{\prime} \mathrm{W}, 620-450 \mathrm{~m}$	Metaverruca recta, Costatoverruca cornuta.
186	4.XI. 1971	$37^{\circ} 51,5^{\prime} \mathrm{N}-25^{\circ} 40^{\prime} \mathrm{W}, 455-370 \mathrm{~m}$	Megabalanus azoricus.
196	5.XI. 1971	$37^{\circ} 50 ' \mathrm{~N}-24^{\circ} 55,5^{\prime} \mathrm{W}, 1191-1146 \mathrm{~m}$	Metaverruca recta,

APPENDIX 2

Cirriped species with present taxonomic status and geographical distribution and references citing them in the Azores Region. ${ }^{*}$, herein.

Species (Names used by the authors)	Authors	Present taxonomic status	Geographical distribution
Heteralepadidae Heteralepas microstoma	Young, in press; *	same	Azores, Madeira, Great Meteor.
Oxynaspididae Oxynaspis celata O. patens	*	same same	Cosmopolitan North Atlantic
Poecilasmatidae	Hoek 1883	same	Azores
Glyptelasma hamatum	* ${ }^{\text {ceek, } 1883}$	same	Circumtropical
Poecilasma aurantia	Gruvel, 1920; *	same	Eastern Atlantic
P. carinatum	Gruvel, 1920	Glyptelasma carinatum	Cosmopolitan
P. crassum	Gruvel, 1920	same	Circumtropical
P. kaempferi	Gruvel, 1920	? = P. aurantia	-
Pr.unguiculus	Aurivillius, 1894	? = P. aurantia	-
Calanticidae			
Scalpellum acutum	Hoek, 1883; Gruvel, 1920; "	Smilium acutum	Cosmopolitan
S. calyculus	Aurivillius, 1898; Gruvel, 1920	Aurivilialepas calyculus	Azores
S. falcatum	Aurlvillius, 1898; Gruvel, 1920	Aurivilialepas falcata	Azores, Great Meteor, off Portugal
S. Grimaldii	Aurivillius, 1898; Gruvel, 1920	Scillaelepas grimaldi	Azores
Scalpellioae			
Scalpellinae Scalpellum vulgare	Gruvel, 1920	Scalpellum scalpellum	Northeastern Atlantic
Scalpellidae			
Meroscalpellinae			
Scalpellum alboranense	Gruvel, 1920	$=N$. debile	,
S. debile	Aurivillius, 1898; Gruvel, 1920; *	Neoscalpellum debile	North Atlantic
S. Edwardsii	Gruvel, 1900a; 1902a	$=$ N. debile	-
Scalpellidae			
Arcoscalpellinae			
Arcoscalpellum michelottianum	Zevina, 1976; *	same	Cosmopolitan
Arcoscalpellum tritonis	*	same	Northeastern Atlantic
Planoscalpellum limpidus	Zevina, 1976; *	same	Northeastern Atlantic and Subantarctic
Scalpellum anceps	Aurivillius, 1898; Gruvel, 1920	Teloscalpellum anceps	Azores
S. atlanticum	Gruvel, 1900a; 1902a; 1920	Teloscalpelum atlanticum	Azores, off Portugal

Species (Names used by the authors)	Authors	Present taxonomic status	Geographical distribution
S. erectum	Aurivillius, 1898	= A. michelottianum	-
S. gigas	Gruvel, 1905	$=T$ ovale (not S. gigas Hoek)	North Atlantic
S. gracile	Gruvel, 1920	Teloscatpellum gracile	Northeastern Atlantic
S. incisum	Aurvillius, 1898; Gruvel, 1920	Teloscalpelum incisum	Azores
S. Iuteum	Gruvel, 1900a; 1902a; *	Teloscalpellum luteum	Azores
S. mamillatum	Aurivillius, 1898; Gruvel, 1920	Amigdoscalpellum mamillatum	Azores
S. molle	Aurivillius, 1898	$(=$ T. regium $)$	-
S. pusillum	Aurivillius, 1898; Gruvel, 1920	Weltnerium pusillum	Newfoundland and Azores
S. recurvitergum	Gruvel, 1905: ${ }^{\text {P }}$	Catherinum recurvitergum	Azores, ?East Africa
S. regium	Gruvel, 19003; 1902a	Trianguloscalpellum regium	North Atlantic
S. rigidum	Aurivillius, 1898	Amigdoscalpellum rigidum	Northeastern Atlantic
S. striatum	Gruvel. 1905; 1920	= A. rigidum	-
S. velutinum	Gruvel, 1920	= A. michelottianum	-
S. vitreum	Zevina, 1976	$=$ A. rigidum (not S. vitreum Hoek)	
Verrucidae			
Verruca inermis	Aurivillius, 1898; Gruvel, 1920	Altiverruca inermis	Azores
V. costata	Aurivillius, 1898; Gruvel, 1920	Altiverruca costata	North Atlantic
V. crenata	Aurivillius, 1898; Gruvel, 1920	Altiverruca crenata	Azores
V. erecta	Gruvel, 1900b; 1902a	Altiverruca erecta	Azores
Altiverruca gibbosa		same	Cosmopolitan
A. obliqua	*	same	Azores; off Spain
Verruca recta	Aurivillius, 1898; Gruvel, 1920; ${ }^{\circ}$	Metaverruca recta	Cosmopolitan
V. sculpta	Aurivitlius, 1898; Gruvel, 1920	= M. recta	-
V V. linearis	Gruvel, 1900b; 1902a; 1920	= M. recta	-
V aequalis	Aurivillus, 1898; Giuvel. 1920;	Metaverruca aequalis	Azores
V. trisulcata	Gruvel, 1900b; 1902a; 1920;*	Metaverruca trisulcata	Azores
V. cornuta	Aurivilius, 1898 ; Gruvel, 1920; "	Costatoverruca cornuta	Azores, Great Meteor
V. strömia	Gruvel, 1902a	probably a misidentification	-
V. spengleri	Gruvel, 1920; Baker, 1967; *	same	Azores, Madeira, Black Sea?
Chthamalidae			
Chthamalus stellatus	Pilsbry, 1916; Gruvel, 1920; Baker, 1967; *	same	Northeastern Atlantic
Tetraclitidae			
Tesseropora arnoldin.sp.		same	Azores
Tetraclita squamosa elegans	Baker, 1967	= T. arnoldi, not T. elegans Darwin	-
Tesseropora atlantica	Newman and Ross, 1977	= T. arnoldi (in part, specimens from Azores)	-

Species (Names used by the authors)	Authors	Present taxonomic status	Geographical distribution
Bathylasmatidae Balanus hirsutus	Gruvel, 1920; *	Bathylasma hirsutum	Northeastern Atlantic
Balanidae			-
B. crenatus B. amphitrite	Gruvel, 1920	probably a misidentification	-
B. trigonus	Pilsbry, 1916; Gruvel, 1920; Baker, 1967;	same	Cosmopolitan
B. spongicola B. tintinnabulum azoricus	Gruvel, 1920 Pilsbry, 1916; Gruvel, 1920; Baker, 1967;	probably a misidentification Megabalanus azoricus	- Azores

[^0]: 1. See the part of the revision of Verrucidae for generic diagnosis.
[^1]: 2. Sometimes, it is difficult to define the limits between "adductor ridge" and "myophore". The myophore is defined as a "tongueshaped adductor ridge" (Pilsbry 1916: 21).
